Matemática – Aritmética – Divisão parte II

Divisão.

  • Vamos continuar aprendendo mais um pouco.
  • Vou tentar apresentar alguns exemplos onde apareçam as dificuldades que podem atrapalhar e explicar como se procede para contornar.
  • Vejamos o caso:
  • $$\color{NavyBlue}{1516\div 76 = ?}$$

Temos que dividir os três primeiros algarismos do dividendo, para ser possível. Observe que ${15\div 7 = 2}$. Isso nos daria o primeiro algarismo do quociente igual a 2. Mas, ao multiplicar ${2\times 76 = 152}$, vemos que não é possível subtrair esse valor de ${151}$. Assim, temos que reduzir o primeiro algarismo do quociente para 1. Isso acontece com frequência. É preciso ter cuidado para não se perder nesse momento.

Colocando ${1}$ no quociente e fazendo a multiplicação, subtraímos de ${151-76 = 75}$. O resto é ${75}$. Note que faltou pouco para o quociente ser ${2}$. Baixamos o ${6}$ para a direita do resto e temos o número ${756}$. Importante notar que nunca se colocam dois algarismos de uma vez no quociente. Por isso o máximo que pode aparecer é ${9}$, nunca mais. A multiplicação ${9\times 76 = 684}$, subtraímos  ${756-684=72}$. Temos portanto o resultado da divisão: $\color{NavyBlue}{1516\div 76 = 19}$, $\color{NavyBlue}{resto = 72}$ $\Leftrightarrow $ $\color{NavyBlue}{19\times 76 + \color{Red}{72} = 1516}$

$\color{NavyBlue}{5356\div 52 = ?}$

O primeiro algarismo do quociente será ${1}$ (um) e teremos resto ${1}$. Ao baixarmos o próximo algarismo, forma-se o número ${15\lt 52}$ e neste caso escrevemos, como próximo algarismo do quociente um ${0}$ (zero), antes de baixar o outro algarismo, formando agora o número ${156}$. A divisão de ${15\div5 = 3}$ o que deve permitir divisão por ${3}$ (três). Multiplicando ${3\times 52 = 156}$, que subtraído do dividendo, deixará resto${0}$ (zero). Resulta que $\color{NavyBlue}{5356\div 52 = 103}$, $\color{NavyBlue}{resto = 0}$ $\Leftrightarrow$ $\color{NavyBlue}{103\times 52 = 5356}$.

  • $\color{NavyBlue}{4009\div 64 = ?}$

Os dois primeiros algarismos do dividendo formam um número menor que o divisor ${40\lt 64}$. Então temos que começar dividindo o número com três algarismos ${400\gt 64}$. Dividindo ${40\div 6 = 6}$, resto ${4}$. Devemos ter como primeiro algarismo do quociente o ${6}$ (seis). ${6\times 64 =384\lt 400}$. Subtraindo ${400 – 384 =16}$. Escrevemos ao lado direito do resto o último algarismo do dividendo, formamos ${169}$. A divisão ${16\div 6 = 2}$ com resto ${4}$. O próximo algarismo do quociente será ${2}$. ${2\times 64 = 128}$, que subtraído ${169 – 128 = 41}$. O quociente da divisão será pois ${62}$ e o resto ${41}$. Podemos escrever: $\color{NavyBlue}{4009\div 64 = 62}$, $\color{NavyBlue}{resto = 41}$, $\Leftrightarrow$ $\color{NavyBlue}{62\times 64 +\color{red}{41} = 4009}$

  • $\color{navy}{2401\div 49 = ?}$
  • O número para começar a divisão, deve ter três algarismos, pois ${24\lt 49}$. Então ${24\div 4 = 6}$. Fazendo ${6\times 49 = 294\gt 240}$ o que não permite a divisão. Diminuímos para ${5\times 49 = 245\gt 240}$, também não permite a divisão. Devemos começar com o algarismo ${4}$ no quociente. Multiplicando ${4\times 49 = 196}$. Subtraindo ${240 – 196 = 44}$.
  • Escrevemos à direita do resto o último algarismo do dividendo ficamos com ${441}$. Dividindo ${44\div 4 = 11\gt 9}$. Portanto o próximo algarismo pode ser no máximo ${9}$. Multiplicamos ${9\times 49 = 441}$. Subtraímos ${441 – 441 = 0}$. Então:
  • $\color{NavyBlue}{2401\div 49 = 49}$,$\color{NavyBlue}{resto = 0}$ $\Leftrightarrow$ $\color{NavyBlue}{49\times 49 = 2401}$.
  • $\color{NavyBlue}{2581\div 89 =?}$

A divisão começa pelo número ${258}$, onde temos ${25\div 8 = 3}$, restando ${1}$. Multiplicando ${3\times 89 = 267\gt 258}$. Temos que diminuir uma unidade. Agora ${2\times 89 = 178}$, que diminuído ${258 – 178 = 80}$. Escrevendo o algarismo final ${1}$ à direita do resto fica ${801}$. Para saber o valor do próximo algarismo do quociente, vejamos quanto dá ${80\div 8 = 10\gt 9}$, por isso devemos usar no máximo ${9}$. Multiplicamos ${9\times 89 = 801}$. Diminuímos ${801 – 801 = 0}$. $\color{NavyBlue}{2581\div 89 = 29}$, $\color{NavyBlue}{resto = 0}$, $\Leftrightarrow$ $\color{NavyBlue}{29\times 89 = 2581}$.

Exercícios, lá vamos nós!

Efetue as divisões a seguir, usando para isso a forma de escrever os termos dentro da chave e realizando as operações, passo a passo. 

  • $\color{OliveGreen}{3792\div 65 =?}$
  • $\color{OliveGreen}{7921\div 89  = ?}$
  • $\color{OliveGree}{4036\div 53  = ?}$
  • $\color{OliveGreen}{5123\div 47 =?}$
  • $\color{OliveGreen}{3584\div 37 = ?}$
  • $\color{OliveGreen}{10548\div 96 =?}$
  • $\color{OliveGreen}{3230\div 65 = ?}$
  • $\color{OliveGreen}{3792\div 72 = ?}$
  • $\color{OliveGreen}{9486\div 75 =?}$
  • $\color{OliveGreen}{5392\div 82 =?}$

Obs.: Em caso de qualquer dúvida, faça contato com um dos meios abaixo para tirar suas dúvidas. Mande outro tipo de dúvida que tentarei ajudar se for possível. 

Confira as respostas que obteve para os exercícios acima. 

  • $\color{OliveGreen}{3792\div 65 = 58 \Rightarrow (58\cdot 65) + 22}$
  • $\color{OliveGreen}{7921\div 89 = 89\Rightarrow(89\cdot 89) = {(89)}^2}$
  • $\color{OliveGreen}{4036\div 53  = 76\Rightarrow (76\cdot 53) + 8}$
  • $\color{OliveGreen}{5123\div 47 =109\Rightarrow (109\cdot 47)}$
  • $\color{OliveGreen}{3584\div 37 = 96 \Rightarrow(96\cdot 37) + 32}$
  • $\color{OliveGreen}{10548\div 96 = 109 \Rightarrow (109\cdot 96) + 84}$
  • $\color{OliveGreen}{3230\div 65 = 49 \Rightarrow (49\cdot 65) +45}$
  • $\color{OliveGreen}{3792\div 72 = 52 \Rightarrow(52\cdot 72) + 48}$
  • $\color{OliveGreen}{9486\div 75 =126 \Rightarrow(126\cdot 75) + 36}$
  • $\color{OliveGreen}{5392\div 82 =65 \Rightarrow (65\cdot 82) + 62}$

Curitiba, 14 de julho de 2016. Revisado e atualizado em 12 de outubro de 2019.

Décio Adams

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular: (41) 99805-0732

Matemática – Aritmética – Divisão

Divisão

  • Divisão. Do mesmo modo que a subtração é a operação inversa da adição, a divisão é a inversa da multiplicação.

Vamos tomar um exemplo.

  • A mãe volta do trabalho e passa pelo mercado. Compra os mantimentos necessários para fazer a janta e café da manhã. Para agradar seus três filhos, passa na seção de balas e doces, pegando um pacote de bombons, com 15 unidades.

Continue lendo “Matemática – Aritmética – Divisão”

Matemática – Aritmética. Curiosidade sobre divisibilidade por 11.

Curiosidade!

Não sei se é realmente uma curiosidade, ou se estou “redescobrindo” a roda. Mas estava eu às voltas com os critérios de divisibilidade, objeto de um artigo que publiquei em dias passados, quando me ocorreu verificar o caso dos números divisíveis por $\color{Navy}{11}$. Eu estava buscando um número de vários algarismos e que fosse divisível por $\color{Navy}{11}$. Lembrei que basta repetir um número, numa linha abaixo, deslocando o algarismo das unidades para as dezenas e assim até o final. Feito isso efetua-se a soma, resultando um número divisível. Vejamos como isso funciona para não deixar dúvidas.

Na figura está efetuada a multiplicação de $\color{Navy}{475\cdot 11} = \color{Red}{5225}$. No momento de fazer a multiplicação, vemos que multiplicamos o número duas vezes por ${1}$, apenas escrevendo os resultados com as colunas deslocados, uma vez que o segundo representa a multiplicação por $\color{Navy}{10}$ e poderíamos completar a coluna das unidades colocando ali um $\color{navy}{ 0}$. Um detalhe importante a ser notado, é que o último algarismo do produto é sempre igual ao último algarismo do número multiplicado por ${11}$.

Prova Real da adição é feita subtraindo do total, uma das parcelas. Isso me levou a fazer o que segue. Peguei o número, nesse caso $\color{navy}{5225}$, escrevendo sob o algarismo das unidades o algarismo ${0}$ e subtraindo. Depois escrevi sob o algarismo das dezenas o resto da primeira subtração, ou seja o último algarismo. Efetuei a subtração e repeti o processo, até subtrair o último algarismo que deu ${0}$.  

Note que, ao escrever o último resto, como próximo algarismo do subtraendo dessa operação, estava repetindo o resto, tendo o ${0}$ no final. Vejamos como isso terminou, colocando agora o ${7}$, até terminar.

Podemos notar que os mesmos algarismos do resto, estão na posição do subtraendo e o último algarismo da esquerda no resto deu ${0}$.

Pela regra vista nos critérios de divisibilidade em geral, faríamos a adição dos algarismos de ordem ímpar e os de ordem par, subtraindo um do outro. Se o resultado for divisível por ${11}$, o número analisado também é divisível. Vamos ver:

  • $\color{Navy}{S_{i} = 5 + 2 = 7}$
  • $\color{Navy}{S_{p} = 2 + 5 = 7}$
  • $\color{Navy}{S_{i} – S_{p} = 7 – 7 = 0}$
  • O número ${0}$ é divisível por qualquer número e portanto também por $11$. Logo o número ${5225}$ é divisível por ${11}$.
  • Vejamos outro exemplo para tirar as dúvidas.
Note que também aqui acontece a mesma coisa. Subtraindo o ${0}$ do último algarismo o resto é o próprio. Subtraindo esse algarismo do algarismo das dezenas, temos o segundo resto. Este subtraído do algarismo das centenas, nos dá o terceiro resto, que subtraído do algarismo dos milhares nos dá o último resto. Subtraímos este do algarismo das dezenas de milhares e teremos resto zero. Isso evidencia que o número ${80212}$ é divisível por${11}$. Para sanar a dúvida, apliquemos também aqui o critério da soma dos algarismos de ordem ímpar e ordem par:
${S_{i} = 8 + 2 + 2 = 12}$
${S_{p}= 0 + 1 = 1}$
${\Delta S=S_{i}- S_{p} = 12 – 1 = 11}$
Comprovamos que é divisível por ${11}$ e também validamos o critério apresentado no primeiro exemplo.
  • Vamos ver se isso funciona com outro número, que não seja divisível. Por exemplo $\color{Navy}{7439}$. Pelo critério geralmente usado teremos:
  • $\color{Navy}{S_{i} = 9 + 4 = 13}$
  • $\color{Navy}{S_{p}=3 + 7 = 10}$
  • $\color{Olive}{S_{i} – S_{p} = 13 – 10 = 3}$, que não é divisível por ${11}$, indicando que o número $\color{Navy}{7439}$ também não é.
  • Como fica aplicando o procedimento que eu observei.

Vemos que tudo foi igual ao outro exemplo, menos na última subtração, onde não foi possível fazer $\color{Navy}{6 – 9}$ e não tínhamos vizinho à esquerda para emprestar. Poderia ter ocorrido que a subtração fosse possível, mas desse diferente de ${0}$. Nesse caso, o número $\color{Navy}{7439}$ não é divisível por $\color{Navy}{11}$. Estou apresentando como uma “curiosidade”, para que mais pessoas testem o procedimento e opinem.Talvez até já seja do conhecimento de outras pessoas, mas não seja considerado algo digno de nota. Quem ler e testar, pode me dar sua opinião a respeito. Talvez seja possível desenvolver alguma discussão a respeito.  Para colocar em teste, vamos observar mais alguns exemplos.

  • $\color{Brown}{{34793}\div {11} = ?}$
    • Pelo critério geralmente usado
      • $\color{Olive}{S_{i} = 3 + 7 + 3 = 13}$
      • $\color{Olive}{S_{p} = 9 + 4 = 13}$
      • $\color{Navy}{S_{i} – S_{p} = 13 – 13 = 0}$ $\rightarrow$ é divisível por $11$.
    • Pelo procedimento por mim apresentado.
A última subtração deu zero e por isso o número $ 34793$ é divisível por$ 11$, o que é confirmado pelo critério da soma dos algarismos de ordem ímpar e ordem par.

Podemos observar nitidamente que o resto e o subtraendo tem os mesmos algarismos, com a exceção do ${0}$, o que indica a multiplicação por ${10}$. Mas o último algarismo da esquerda agora foi igual a ${0}$, indicando divisibilidade por ${11}$. $\color{Olive}{{76549}\div {11} = ?}$

Os dois métodos confirmam o mesmo resultado. Número divisível por 11.

Abaixo do procedimento que identifiquei. O ${0}$ na última posição do resto, indica divisibilidade. Pelo critério geral. $\color{navy}{S_{i} =9 + 5 + 7 = 21}$ $\color{Navy}{S_{p} = 4 + 6 = 10}$ $\color{Navy}{S_{i} – S_{p} = 21-10 =11}$, isto também indica divisibilidade por $11$.

  • $\color{Olive}{{457963}\div{11} =?}$

Abaixo está feita a demonstração pela subtração e o resultado indica que o número $\color{Olive}{457963}$ é divisível por $\color{olive}{11}$. Usando o critério comum.

  • $\color{Navy}{S_{i}=3+9+5 =17}$
  • $\color{Navy}{S_{p}=6+7+4=17}$
  • $\color{Olive}{S_{i}-S_{p}=17-17=0}$, indicando divisibilidade.

Podemos observar que nos casos em que o número é divisível, os dois critérios conferem no resultado. Vamos usar números não divisíveis para ver.

  • $\color{Olive}{{73259}\div{11} =?}$
Os dois critérios indicam que o número não é divisível por 11.

Pela subtração, notamos que não foi possível fazer a última subtração, pois não é possível fazer ${6 – 7}$, nessa forma. Não é divisível por ${11}$. Pela adição das ordens. $\color{Navy}{S_{i}=9+2+7=18}$ $\color{Navy}{S_{p}=5+3=8}$ $\color{Navy}{S_{i}-S_{p}=18-8=10}$, não é divisível por ${11}$.

  • $\color{Olive}{{827568}\div{11} =?}$
Os dois métodos indicam que o número fornecido não é divisível por 11.

O método da subtração mostra que não é divisível, pois o último algarismo da esquerda deu diferente de ${0}$. Pela adição das ordens.

  • $\color{Navy}{S_{i[}=8+5+2=15}$
  • $\color{Navy}{S_{p}=6+7+8=21}$
  • $\color{Olive}{S_{p}-S_{i}=21-15=6}$, não é divisível por ${11}$.

Os exemplos  mostrados{ permitem deduzir que o procedimento é válido e, dependendo da prática, pode ser até mais rápido do que o outro. Vamos ver qual será a opinião dos meus leitores.

  • Treinar um pouco faz bem. Vamos verificar se os números a seguir são divisíveis por 11 ou não.

a) ${5724}$ ?

b) ${41294}$ ?

c)${7425}$ ?

d)${949007}$ ?

e)${4267}$?

f)${9339}$ ?

Obs.: Se você ler essa matéria, testar e julgar válida minha demonstração, me mande sua opinião. Se julgar inútil, ou sem validade, também me informe, para que possa ter uma ideia da aceitação ou não do procedimento. 

Curitiba, 21 de julho de 2016. Revisado, melhorado e republicado em 05 de outubro de 2019.

Décio Adams

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732

Matemática – Aritmética. Múltiplos e sub-múltiplos

Múltiplos e sub-múltiplos.

  • Já estudamos a multiplicação e sua inversa, a divisão.
  • A tábuada nos mostra o resultado da multiplicação dos números ${le10}$ entre si. O verbo multiplicar nos leva a palavra múltiplo. O resultado da multiplicação nos fornece um múltiplo do número multiplicado. Dessa forma podemos definir uma família de múltiplos para qualquer número. Por exemplo: ${f_{m}(3) =?}$. Essa família será um conjunto de todos os múltiplos do número ${3}$ (tres). Começaremos  multiplicando por ${\{0,1,2,3,4,5…\}}$ e assim sucessivamente. Logo essa família é infinita. 
  • $\color{navy}{f_{m}(3) = \{0, 3, 6, 9, 12, 15, 18, …\}}$
  • $\color{navy}{f_{m}(5) =\{0, 5, 10, 15, 20, 25, 30, …\}}$
  • Percebemos imediatamente que todas as famílias de múltiplos começam com o número 0 (zero), pois todos serão multiplicados por ele e o resultado só pode ser esse. A multiplicação de cada número por ${1}$ (um), dá o próprio número e assim sucessivamente.
  • Podemos escrever de modo genérico \[\bbox[5px,border: 2px solid olive]{\color{brown}{f_{m}(n) = \{0\cdot n, 1\cdot n, 2\cdot n, 3\cdot n, …\}}}\]
Continue lendo “Matemática – Aritmética. Múltiplos e sub-múltiplos”

Matemática – Aritmética. Números primos

  • Números primos
  • Oigalê! Números também tem primos e primas, que nem a gente?

Na verdade é a denominação dada a um grupo de números com uma característica bem definida. Se verificarmos sua família de divisores, veremos que ela tem somente dois elementos. O número ${1}$ (um) e o próprio número. São números que não são divisíveis por outros números, além da unidade e de si próprios. Vejamos.

  • $\color{navy}{ fd(1) = \{1\}}$ $\rightarrow$, é primo.
  • $\color{navy}{ fd(2) = \{1, 2\}}$ $\rightarrow$, é primo.
  • $\color{navy}{ fd(3) = \{1,3\}}$ $\rightarrow$, é primo.
  • $\color{navy}{ fd(4) = \{1,2,4\}}$ $\rightarrow$, não é primo. Tem um terceiro divisor.
  • $\color{navy}{ fd(5) = \{1,5\}}$ $\rightarrow$, é primo.
  • $\color{navy}{ fd(6) = \{1,2,3,6\}}$ $\rightarrow$, não é primo. Tem vários divisores
  • $\color{navy}{ fd(7) = \{1,7\}}$ $\rightarrow$, é primo.
  • $\color{navy}{ fd(8) = \{1,2,4,8\}}$ $\rightarrow$, não é primo. Tem vários divisores.
  • $\color{navy}{ fd(9) = \{1,3,9\}}$ $\rightarrow$, não é primo. Tem um terceiro divisor
  • $\color{navy}{ fd(10)= \{1,2,5,10\}}$ $\rightarrow$, não é primo. Divisores diversos.
  • $\color{navy}{ fd(11)= \{1,11\}}$ $\rightarrow$, é primo.
  • $\color{navy}{ fd(12)= \{1, 2, 3, 4, 6, 12\}}$ $\rightarrow$, não é primo.
  • $\color{navy}{ fd(13)= \{1,13\}}$ $\rightarrow$, é primo.
  • Notamos que aos poucos os números primos vão ficando mais esparsos no meio dos números divisíveis por outros números. Para saber se um número é primo ou não, existem meios de fazer isso. Quando se trata de um número de valor mais elevado, demoraríamos algum tempo, tentando escrever todos os seus divisores. E daí entramos com um outro recurso.
Continue lendo “Matemática – Aritmética. Números primos”

Matemática – Aritmética. Divisibilidade, aplicação dos critérios.

Divisibilidade.

Recordando os critérios de divisibilidade, vamos resolver alguns exercícios sobre o assunto, antes de continuarmos com os outros casos. 

  • Verifique a divisibilidade dos números a seguir.
    • $\color{Navy}{1546}$
    • O último algarismo é par e portanto é divisível por 2 (dois). $\color{Navy}{1546\div 2= 773}$
    • A soma dos algarismos $\color{Navy}{S=1+5+4+6= 16}$. Esse número não é divisível por $\color{Navy}{3}$ e portanto o primitivo também não é.
    • termina em $\color{Navy}{6}$ e assim não é divisível por $\color{Navy}{5}$.
    • O dobro do último algarismo é $\color{Navy}{2\cdot 6 = 12}$. Subtraindo esse valor do número formado pelos algarismos restantes, temos $\color{Navy}{154 – 12 = 142}$. O número obtido não é divisível por $\color{Navy}{7}$.
    • A soma das ordens pares e ímpares $\color{Navy}{S_{i} = 6 + 5 = 11}$ e $\color{Navy}{S_{p}= 4 + 1 = 5}$. A diferença entre essas somas $\color{Navy}{S_{i} – S_{p} = 11 – 5 = 6}$. Como o resultado não é múltiplo de $\color{Navy}{11}$, o número também não é divisível por $\color{Navy}{11}$.
Continue lendo “Matemática – Aritmética. Divisibilidade, aplicação dos critérios.”

Matemática – Aritmética. Divisão exata e aproximada de números.

Divisão decimal aproximada.

Quando estudamos a divisão, vimos que grande parte das vezes essa operação não é exata, sobrando ao final do processo, um resto menor que o divisor. Naquele momento deixamos de efetuar esse complemento da operação. Ficamos com o resultado:

  • $\color{navy}{quociente\cdot divisor + resto = dividendo}$

Agora, vamos determinar o resultado da operação, com uma aproximação na forma de número decimal. Para isso recorremos à colocação de uma vírgula após o último algarismo inteiro obtido no quociente e acrescentamos um zero no resto. A partir daí tentamos continuar a divisão. Se ainda não for possível, acrescentamos um zero ao quociente e mais outro no resto. Podemos continuar assim indefinidamente. Talvez em algum momento ocorra uma divisão exata, ou então teremos uma dízima periódica, quando um ou mais algarismos começam a se repetir no quociente. O melhor de tudo é fazer isso na prática. 

Continue lendo “Matemática – Aritmética. Divisão exata e aproximada de números.”

01.061 – Matemática, Álgebra. Inequação do primeiro grau.

Inequação! Que é isso?

Lembremos que uma equação é uma igualdadeentre duas quantidades, representadas por números, letras e expressões de letras com números. O prefixo in é uma negação. Assim a palavra inequação, poderíamos dizer, que é a negação de uma equação. Em outras palavras é uma desigualdade. Existem alguns símbolos que usamos para indicar essas desigualdades como:

  • “Menor do que”                                               $\Rightarrow\color{maroon}{ \mathbf{\lt}} $
  • “maior do que”                                                $\Rightarrow \color{maroon}{\mathbf{\gt}} $
  • “menor ou igual a”                                          $\Rightarrow \color{maroon}{\mathbf{\le}} $
  • “maior ou igual a”                                            $\Rightarrow\color{maroon}{\mathbf{ \ge}} $
  • “Diferente”                                                        $\Rightarrow\color{maroon}{\mathbf{\neq}} $
  • “Não menor do que”                                       $\Rightarrow\color{maroon}{\mathbf{\not\lt}} $
  • “Não maior do que”                                         $\Rightarrow\color{maroon}{\mathbf{\not\gt}} $
  • “Não menor ou igual a”                                    $\Rightarrow\color{maroon}{\mathbf{\not\le}}$
  • “Não maior ou igual a”                                    $\Rightarrow\color{maroon}{ \mathbf{\not\ge}}$

Em determinados momentos, todos esses símbolos podem aparecer em uma expressão matemática. No caso presente, estudo das inequações, iremos usar principalmente os quatro primeiros. Vejamos alguns exemplos:

  • $\bbox[5px,border:2px solid brown]{\color{navy}{2x -3 \lt 0}} $
  • $\bbox[5px,border:2px solid brown]{\color{navy}{ x + 7 \gt 2}} $
  • $\bbox[5px,border:2px solid brown]{\color{navy}{ 8 -x \ge 5}}$
  • $\bbox[5px,border:2px solid brown]{\color{navy}{ 4 + x \le 2x}} $
  • A determinação do conjunto verdade de uma inequação, é feita de modo semelhante ao procedimento adotado nas equações, com algumas peculiaridades próprias.
  • Vamos pegar como exemplo a primeira das quatro citadas acima:
  •  $\bbox[5px,border:2px solid brown]{\color{navy}{2x – 3\lt 0}}$.
  • O objetivo é obter uma desigualdade que indique onde estão localizados os valores que servem para substituir  nessa inequação. Temos então que deixar o isolado no primeiro membro.
  • \[ 2x – 3 + 3 \lt 0 + 3 \] \[2x \lt 3 \] \[ {{2x}\over 2} \lt {3\over 2} \] \[ x \lt {3\over 2} \]
  • Isso nos mostra que todos os números reais, menores do que o número 3/2 servem para x, isto é, transformam a expressão em uma sentença verdadeira. Logo: \[\bbox[5px,border:2px solid brown]{\color{navy}{ V =\left\{ x\in R | {x\lt {3\over 2}}\right\}}} \]
  • Representando o conjunto dos números reais na Reta Real, o conjunto verdade dessa inequação será formado por todos os números associados aos pontos dessa reta, à esquerda do ponto que corresponde ao número 3/2.

Rendered by QuickLaTeX.com

  • A vez da terceira:
  • $\bbox[5px,border:2px solid brown]{\color{navy}{ 8 -x \ge 5}} $
  • Aplicando o mesmo procedimento, ficamos com:
  • \[ 8 – 8 – x \ge 5 – 8 \] \[ -x \ge -3 \]
  • Observe que o os dois membros da inequação são precedidos do sinal $-$, o que nos indica que para melhor interpretação, devemos multiplicar a expressão toda $-1$. Lembrando da reta numérica, vamos observar que a posição dos números negativos, fica invertida em relação ao zero$(0)$, isto é, quanto maior for o módulo, mais à esquerda ele se situa. A consequência disso é que, a multiplicação de uma inequação por $-1$, inverte o sentido da desigualdade, ou seja se era $\le$, passa para $\ge$ e vice-versa. Vamos ver como fica nosso exemplo.
  • \[ {(-x \ge – 3)}\cdot{(-1)} \] \[ x\le 3 \]
  • O conjunto verdade dessa inequação será pois:
  • \[\bbox[5px,border:2px solid brown]{\color{navy}{ V = \{x\in R|{x\le 3}\}}} \]
  • Neste caso o número $3$, faz parte do conjunto verdade. Ficam excluídos apenas os números à direita do $3$. Na Reta Real fica:

Rendered by QuickLaTeX.com

  • O último exemplo:
  • $\bbox[5px,border:2px solid brown]{\color{navy}{ 4 + x \le 2x}} $
  • Aplicando o raciocínio par isolar a variável, temos:
  • \[ 4 – 4 + x \le 2x – 4 \] \[ x – 2x \le 2x – 2x – 4 \] \[ -x \le -4 \]
  • Novamente é preciso multiplicar por $-1$, e inverter o sinal da desigualdade.
  • \[{(-x \le -4)}\cdot{(-1)} \] \[ x \ge 4 \]
  • O conjunto verdade será composto por todos os números reais, desde o $4$ inclusive, até infinito$\infty$.
  • \[\bbox[5px,border:2px solid brown]{\color{navy}{V = \{x\in R|{x\ge 4}\}}} \]
  • Na Reta Real,  teremos:

Rendered by QuickLaTeX.com

  • O final da resolução de qualquer inequação de primeiro grau será sempre a variável, seguida de um sinal de desigualdade e depois um número. Se a variável tiver sinal negativo, devemos multiplicar por $\color{Brown}{-1}$ e inverter o sinal da desigualdade. Isso não pode ser esquecido. 

Vamos “malhar”?

  • Determine o conjunto verdade das inequações a seguir.
  • $\color{navy}{ 4x – 7 \lt 2x + 1}$
  • $\color{navy}{ 11 + 3x \gt – 8} $
  • $\color{navy}{ – 6 + 2x \ge 3x + 1}$
  • $\color{navy}{ 6 \le 5 – 3x} $
  • $\color{navy}{ 3y + 4 \le 7 – y} $
  • $\color{navy}{15 – 4x \lt 11 +x}$
  • $\color{navy}{ 6x + 5\gt 4x – 7}$
  • $\color{navy}{ 2 + 7x \ge 6x + 4} $

 Curitiba, 21 de maio de 2016.

Curitiba, 07 de janeiro de 2018 (Revisto e republicado)

Décio Adams

[email protected]

[email protected]

www.facebook.com/decio.adams

www.facebook.com/livros.decioadams

www.facebook.com/decioadams.matfisonline

@adamsDcio

Fone: (41) 3019-4760

Celular: (41) 99805-0732

01.057 – Matemática, Álgebra. Equações incompletas do 2ºGrau, exercícios resolvidos.

Resolvendo exercícios

Determine o conjunto verdade das equações incompletas do segundo grau que seguem.

a) $ 6x² = 0 $

Um produto é nulo se um dos fatores é nulo. No caso, temos dois fatores onde um é igual a seis (6) e o outro $ x^2$. O único fator que pode ser nulo é o segundo e portanto:

$ x^2 = 0 $

$ x = 0 $

$ V = \{0\} $

b) $ x² – 16 = 0 $

Podemos aplicar o método abreviado ou reduzido na resolução dessa equação. Assim:

$ x^2 – 16 = 0 $

${x^2 – 16 +16 = 0 + 16}$

$ x^2 = 16 $

$\sqrt[2]{x^2} = \sqrt[2]{16} $

$ x = \pm {4 } $

$ V = \{ – 4, + 4\} $

c) $ 5x² – 125 = 0 $

O mesmo caso do exercício anterior.

$ 5x^2 – 125 = 0 $

$ 5x^2 – 125 + 125 = 0 + 125 $

$ 5x^2 = 125 $

$ {{5x^2}\over 5} = {125\over {5}} $

$ x^2 = 25 $

$\sqrt[2]{x^2} = \sqrt[2]{25} $

$x = \pm 5 $

$ V = \{ -5, + 5\} $

d) $ 2x² + 10x = 0$

Esta é uma equação incompleta do tipo em que o termo independente c é nulo. O procedimento agora é diferente, como vimos na parte explicativa.

$ 2x^2 + 10x = 0 $

Entre os dois termos da equação existe um fator comum

$ 2x $

Vamos colocar em evidência esse fator comum, dividindo os dois membros por esse mesmo fator.

$ {2x} [{{2x^2 + 10x)}\over 2x}] = 0 $

$ 2x{(x + 5)} = 0 $

Para concluir, vamos igualar os dois fatores a zero e obter as duas raízes correspondentes.

$ 2x = 0 $

${2x\over 2} = {0\over 2}$

$ x = 0$

$ x + 5 = 0 $

$ x + 5 – 5 = 0 – 5 $

$ x = -5 $

$ V = \{-5, 0\} $

e) $ 7x² – 49x = 0$

O mesmo caso anterior. O fator comum entre os dois termos da equação é

$ 7x $

Colocando em evidência:

${7x}\cdot[{{7x^2 – 49x}\over 7x}] = 0 $

$ 7x[ x – 7] = 0 $

Igualando os dois fatores a zero temos:

$ 7x = 0 $

${7x\over 7} = {0\over 7}$

$ x = 0$

$ x – 7 = 0 $

$ x – 7 + 7 = 0 + 7 $

$ x = 7 $

$ V = \{0, 7\} $

f) $ x² + 4x = 0 $

Fator comum entre os dois termos $ x $. Colocando em evidência:

$ x\cdot[{{x^2 + 4x}\over x}] = 0 $

$ x\cdot [x + 4] = 0 $

Igualando os fatores à zero, teremos:

$ x = 0$

$ x + 4 = 0 $

$ x + 4 – 4 = 0 – 4$

$ x = -4$

$ V = \{-4, 0\} $

g) $ 3x² + 18x = 0$

Mais um do mesmo tipo. Fator comum é $ 3x $ Colocamos em evidência:

${3x}\cdot({{3x^2 + 18x}\over {3x}}) = 0 $

$ 3x\cdot({x + 6}) = 0 $

$ 3x = 0 $

$ x = 0 $

$ x + 6 = 0 $

$ x + 6 – 6 = 0 – 6$

$ x = -6 $

$V = \{-6, 0\} $

h) $ 2x² + 12 = 0$

Voltamos ao exemplo visto primeiro. Vamos resolver.

$2x^2 + 12 – 12 = 0 -12 $

$2x^2 = -12 $

${{2x^2}\over 2} = {-12\over 2} $

$ x^2 = -6 $

${ \sqrt[2]{x^2}} = {\sqrt[2]{-6}} $

$ {V = \emptyset} $

i) $ 10 x² – 90 = 0 $

Vamos resolver.

${ 10 x^2 – 90 + 90 = 0 + 90 }$

$ {10x^2 = 90 }$

$ {{10x^2}\over 10} = {{90}\over 10} $

${ x^2 = 9 }$

${\sqrt[2]{x^2} = \sqrt[2]{9} }$

$ x = \pm 3 $

$ V = \{-3, +3\} $

j) $ {3x^2 = 0 }$

Outro exemplo da equação que só tem o termo em $x^2$. Um produto só pode ser nulo se um dos fatores for nulo. Nesse caso, o fator que pode ser nulo é $x^2$. Portanto:

$ x^2 = 0 $

$\sqrt[2]{x^2} = \sqrt[2]{0}$

$ x = 0 $

$V = \{0\}$

l) ${10x^2 – 15x = 0}$

Estamos novamente com uma equação incompleta, onde falta o termo independente da variável, isto é, onde $x^0$. Temos um fator comum entre os dois termos restantes que é $5x$. Colocamos em evidência o fator comum, ficando:

${5x}\cdot[{{10x^2 – 15x}\over{5x}}] = 0 $

${5x[2x – 3] = 0} $

Igualando os dois fatores a zero, temos:

${5x = 0}$

$ x = 0$

${2x – 3 = 0}$

${2x = 3}$

${{2x}\over{2}} = {{3}\over {2}}$

${ x = 3/2 }$

$ V = \{0, 3/2\}$

m) ${7x^2 – 28 = 0}$

Nesta equação o termo inexistente é o que contem a variável $x^1$. Vamos pelo método abreviado:

${7x^2 – 28 = 0}$

$ {{7x^2 – 28}\over 7} = 0$

$ x^2 – 4 = 0$

${ x^2 =  4}$

${\sqrt[2]{x^2} = \sqrt[2]{4}}$

${ x = \pm{2}}$

$ { V = \{- 2, +2\}}$

n) ${3x^2 – 27 = 0 }$

O mesmo caso do anterior.

${3x^2 – 27} = 0$

${{3x^2 – 27}\over 3} = 0$

${x^2 – 9 = 0}$

${x^2 = 9}$

${\sqrt[2]{x^2} = \sqrt[2]{9}}$

${ x = \pm 3}$

$ V = \{-3, +3\} $

o) $ {5x^2 + 25 = 0}$

Vamos ver como fica esse.

${5x^2  + 25 = 0}$

${{5x^2 + 25}\over 5} = 0$

$ {x^2 + 5 = 0} $

$ x^5 = -5 $

$ \sqrt[2]{x^2} = \sqrt[2]{-5} $

$ \sqrt[2]{-5} ∉ R $

Por isso

${V = \emptyset }$

Curitiba, 13 de maio de 2016.

Republicado em 27 de dezembro de 2017.

Décio Adams

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celulares: (41) 99805-0732

01.051 – Matemática, Álgebra, Equação do segundo grau.

Equação do segundo grau

Vimos a equação do primeiro grau, onde a incógnita (variável), tem o expoente igual a unidade. Agora é a vez de termos uma igualdade algébrica, com uma incógnita e o expoente máximo é igual a 2. A forma algébrica dessa equação é formada por um trinômio, igualado a zero. Assim:

$$\color{NavyBlue}{ ax^2 + bx +c = 0} $$

As letras a, b c, substituem as constantes, isto é, os coeficientes numéricos. Assim, temos um termo com expoente 2, um termo com expoente 1 e o terceiro termo, chamado de termo independente, pois não contém variável, onde consideramos o expoente da mesma igual a zero (0).

Um pouco de história.

A equação do segundo grau é conhecida, em sua forma primitiva há milhares de anos. Há notícias dela nos registros da época dos babilônios. Posteriormente vários matemáticos da Índia deixaram trabalhos relacionados com ela. Hoje usamos na resolução das equações do segundo grau uma fórmula, que leva o nome de um desses matemáticos. É conhecida como Fórmula de Bhaskara. Somos levados a acreditar que foi ele quem desenvolveu a fórmula, porém ela já existia. Ele apenas lhe deu a forma final, ou seja, ele a aprimorou, dando-lhe a forma aproximada do que usamos hoje. Foi no fim da Idade Média, começo do Renascimento que ela recebeu os retoques finais, ficando como é hoje. Vejamos o que é afinal essa fórmula.

$$\color{Sepia}{{x} = { – b \pm \sqrt{b^2 – 4ac}\over2a}}$$

Na hora de determinar as soluções de qualquer equação do segundo grau, bastará usar esta fórmula e teremos como resultado dois valores, o que é uma característica dessas equações. O número de raízes (soluções) corresponde ao numeral indicativo do grau.

Mas cabe uma pergunta, que provavelmente, pelo menos alguns, estarão se fazendo nesse momento. Como se chega a essa fórmula, partindo da forma geral da equação? Será que alguém, em uma linda noite de luar, olhou para as estrelas e, num lampejo de clarevidência, teve uma iluminação, sentou-se e escreveu a fórmula? Isso seria uma linda fábula infantil, que, nos dias de hoje, até as crianças teriam dificuldade em aceitar. E logicamente não foi assim. Provavelmente o raciocínio foi sendo aperfeiçoado ao longo de gerações, até que se deparou finalmente com essa forma que usamos hoje, o que ocorreu depois da era renascentista.

Vamos ver como se pode mostrar que a fórmula é realmente a solução para as equações do segundo grau. É necessário usar alguns artifícios e aplicar o raciocínio algébrico, aritmético até chegar ao resultado final. Começamos por eliminar o termo independente no primeiro membro, pela adição de um termo (- c) aos dois membros da equação. Assim teremos:

$$\color{Sepia}{ax^2 + bx + c – c = -c }$$

$$\color{Sepia}{ax^2 + bx = -c }$$

Se multiplicarmos todos os termos da igualdade por um determinado valor, a igualdade permanece. Não podemos introduzir elementos estranhos na expressão e por isso vamos multiplicar tudo por $${4a}$$, o que nos leva à seguinte expressão.

$${(ax^2 + bx)}\cdot{(4a)} = {(-c)}\cdot{(4a)} $$

$${ 4a^2x^2 + 4abx} = -4ac $$

Observemos o primeiro membro da equação, nesse ponto. Podemos notar que está faltando apenas um termo $ b^2$ para resultar em um trinômio quadrado perfeito, isto é, o quadrado da soma de dois números. Então podemos chegar a isso, se adicionarmos esse termo aos dois membros da equação e teremos:

$${4a^2x^2 + 4abx + b^2} = {b^2 – 4ac}$$

Se o primeiro membro agora é um trinômio quadrado perfeito, podemos substituí-lo pelo quadrado da soma correspondente. Basta extrairmos a raiz quadrada dos termos que são quadrados perfeitos e poderemos escrever:

$${4a^2x^2 + 4abx + b^2} = {(2ax + b)}^2 $$

Agora podemos substituir na equação do segundo grau o primeiro membro por esse quadrado da soma.

$${(2ax + b)}^2 = b^2 – 4ac $$ Na continuação, extraímos a raiz quadrada de ambos os membros, o que resulta assim:

$$\sqrt{{(2ax + b)}^2} = \sqrt{b^2 – 4ac} $$

Note que no primeiro membro, temos a raiz quadrada de um binômio elevado ao quadrado, o que nos permite cancelar o índice com o expoente, isto é, resta apenas o binômio, sem o expoente nem o radical. Fica assim:

$$ 2ax + b = \sqrt{b^2 – 4ac} $$

Se somarmos aos dois membros o simétrico do termo b, teremos:

$$ 2ax + b – b = -b\pm\sqrt{b^2 – 4ac} $$

$$ 2ax = – b\pm\sqrt{b^2 – 4ac} $$

Dividindo ambos os membros por (2a), estaremos terminando a demonstração.

$${2ax\over 2a} = {{-b\pm\sqrt{b^2 – 4ac}}\over 2a}$$

$$\color{Orchid}{{x} ={{-b^+_-\sqrt{b^2 – 4ac}}\over 2a}}$$

E esta é a fórmula mostrada no começo, conhecida mundialmente como Fórmula de Bhaskara e usada em toda parte para solucionar inúmeros problemas envolvendo as equações do segundo grau.

Lembre-se do que falamos nos parágrafos anteriores. Essas equações têm duas soluções ou raízes. Como isso é obtido?

Olhando bem para a fórmula, vemos que o radical existente no segundo membro é precedido pelos sinais (+) e (-). Isso se deve ao fato de que um número elevado ao quadrado, sempre resulta em positivo. Consequentemente, para cada número positivo, existem duas raízes quadradas simétricas. Por exemplo: $\sqrt{ + 4} = \pm {2}$, pois tanto ${(+2)}^2 = + 4 $ quanto ${(-2)}^2 = +4$

Podemos então dizer que existem duas soluções ou raízes (x’  x”) para a equação do segundo grau. Iremos obter essas soluções, da seguinte maneira:

$${x’} = {{-b +\sqrt{b^2 – 4ac}}\over 2a} $$

$${x”} = {{-b – \sqrt{b^2 – 4ac}}\over 2a} $$

Uma das soluções é obtida pela soma do resultado da raiz quadrada e a outra pela subtração. Isso traz algumas considerações que serão vistas mais adiante. Por enquanto, vejamos como se aplica essa fórmula na solução de uma equação do segundo grau.

Obs.:Essa demonstração não é cobrada em provas e concursos, salvo em se tratando de concurso para professores de matemática. Eu costumo mostrar para que o aluno saiba que ela não surgiu do nada. Existe todo um raciocínio que leva a esse resultado final. Mesmo não sendo exigida a memorização da demonstração, o fato de saber que ela existe e é obtida seguindo uma lógica, serve de estímulo ao entendimento e aplicação da mesma.

Seja a equação $$\color{Red}{x^2 + x – 6 = 0}$$

Começamos por identificar os coeficientes numéricos. Vamos comparar essa equação com a forma geral. Escrevendo lado à lado, temos:

$${ax^2 + bx + c = 0} $$

$${x^2 + x – 6 = 0}$$

Comparando as duas, vemos que o coeficiente ${a = 1} $ ${b = 1}$ ${c} = {-6} $. Substituindo na fórmula, teremos:

$${x} = {{-1 \pm\sqrt{1^2 – 4\cdot {1}\cdot{(-6)}}}\over {2\cdot{1}}} $$

$${x} = {{-1\pm\sqrt{1 + 24}}\over 2} $$

$${x} = {{-1\pm\sqrt{25}}\over 2}$$

$${x} = {{-1\pm5}\over 2} $$

Agora é a hora de separar para obter as duas raízes.

$${x’} = {{-1 + 5}\over 2} $$

$$ {x’} = {{4\over 2}}$$

$ x’ = 2 $

$${x”} = {{-1 – 5}\over 2}$$

$${x”} = {-6\over 2} $$

$ x” = -3$

Daí resulta que: \[\color{Blue}{V = \{ -3, 2\}}\]

A equação dada, torna-se uma expressão verdadeira se substituirmos o x por -3 ou por 2. Basta verificar.

$$\begin{align} {(-3)}^2 + (-3) – 6 = 9 – 3 – 6 &= 0\end{align}$$

$$\begin{align}{2^2 + 2 – 6} = 4 + 2 – 6 &= 0\end{align}$$

Agora é hora de praticar.

Determine os conjuntos verdade ou as soluções das equações do segundo grau a seguir.

a)$\color{Sepia}{x^2 -4x + 3 = 0}$

b)$\color{Sepia} {x^2 -2x – 15 = 0} $

c)$\color{Sepia} {x^2 + 2x -35 = 0}$

d)$\color{Sepia} {4x^2 -8x + 3 = 0}$

e)$\color{Sepia} {3x^+ 5x – 2 = 0} $

f)$\color{Sepia} {4x^2 + 4x – 15 = 0}$

g)$\color{Sepia}{x^2 + 3x – 40 = 0}$

Curitiba, 06 de maio de 2016. Republicado em 22 de dezembro de 2017.

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732