046.7 – Matemática, álgebra. Produtos notáveis. Exercícios quadrado da diferença vezes a soma

Quadrado da diferença multiplicado pela soma de dois números

 

Agora vamos multiplicar o quadrado das diferenças, pelas somas dos dois números, conforme a regra vista.

a)$\underbrace{(3x – 2y)^2}\cdot{\overbrace{(3x + 2y)}} $

b)$\underbrace{(5a – bx)^2}\cdot{\overbrace{(5a + bx)}}$

c)$\underbrace{(1 – 5x)^2}\cdot{\overbrace{(1 + 5x)}}$

d)$\underbrace {(6t – 4s)^2}\cdot{\overbrace{(6t+ 4s)}}$

e)$\underbrace{(8i – z)^2}\cdot{\overbrace{(8i +z)}}$

f)$\underbrace{(4n – 5m)^2}\cdot{\overbrace{(4n +5m)}}$

g)$\underbrace{(r – pq)^2}\cdot{\overbrace{(r + pq)}} $

Vamos resolver aplicando a regra.

a)$\underbrace{(3x – 2y)^2}\cdot{\overbrace{(3x + 2y)}} $

$\underbrace{{(3x)}^3} -\overbrace {{(3x)}^2\cdot{(2y)}} – \underbrace{3x\cdot {(2y)^2}} + \overbrace{{(2y)}^3}$

$ 27x^3 – 18x^2y – 12xy^2 + 8y^3 $

b)$\underbrace{(5a – bx)^2}\cdot{\overbrace{(5a + bx)}}$

$\underbrace{{(5a)}^3} -\overbrace{{(5a)^2}\cdot{(bx)}} – \underbrace{5a\cdot{(bx)}^2} +\overbrace{{(bx)}^3}$

$ 125 a^3 – 25abx – 5ab^2x^2 + b^3x^3 $

c)$\underbrace{(1 – 5x)^2}\cdot{\overbrace{(1 + 5x)}}$

$\underbrace{1^3} -\overbrace{ 1^2\cdot 5x} -\underbrace{1\cdot {(5x)^2}} +{{(5x)}^3}$

$ 1 – 5x – 25x^2 + 125x^3 $

d)$\underbrace {(6t – 4s)^2}\cdot{\overbrace{(6t+ 4s)}}$

$\underbrace{{(6t)}^3} -\overbrace {{(6t)}^2\cdot {(4s)}} – \underbrace{6t\cdot {(4s)}^2} +\overbrace {{(4s)}^3}$

$  216t^3 – 144t^2s – 96ts^2 + 64s^3 $

e)$\underbrace{(8i – z)^2}\cdot{\overbrace{(8i +z)}}$

$\underbrace{{(8i)}^3} -\overbrace {{(8i)^2}\cdot {(z)}} – \underbrace{8i\cdot z^2} +\overbrace{ z^3}$

$ 512i^3 – 64i^2z – 8iz^2 + z^3$

 

f)$\underbrace{(4n – 5m)^2}\cdot{\overbrace{(4n +5m)}}$   $\underbrace{{(4n)}^3} -\overbrace {{(4n)^2}\cdot{(5m}} -\underbrace{4n\cdot {((5m)}^2} +\overbrace {{(5m)}^3}$

$  64n^3 – 80mn^2 – 100m^2n + 125m^3 $

 

g)$\underbrace{(r – pq)^2}\cdot{\overbrace{(r + pq)}}$

$\underbrace{ r^3} -\overbrace{ r^2\cdot {(pq)}} -\underbrace{r\cdot {(pq)}^2} +\overbrace{ {(pq)}^3}$

$   r^3 – pqr^2 – p^2q^2r + p^3q^3 $

Vamos deixar uns exemplos para seu treinamento. Não esqueça que em caso de dúvidas pode fazer contato e pedir esclarecimento.

h)$\underbrace{(9 – 3x)^2}\cdot{\overbrace{(9 + 3x)}}$

i) $\underbrace{(4m -n)^2}\cdot{\underbrace{(4m + n)}}$

j)$\underbrace{(5a – 2b)^2}\cdot{\overbrace{(5a – 2b)}}$

l)$\underbrace{(7u – 3v)^2}\cdot{\overbrace{(7u + 3v)}}$

m)$\underbrace{(2mn – 7)^2}\cdot{\overbrace{(2mn + 7)}}$

n)$\underbrace{(5pr – 4tu)^2}\cdot{\overbrace{(5pr + 4tu)}}$

o)$\underbrace{(7f – 3g)^2}\cdot{\overbrace{(7f + 3g)}}$

p)$\underbrace{(9 – 6n)^2}\cdot{\overbrace{(9 + 6n)}}$

Curitiba, 26 de junho de 2018

Décio Adams

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celulares: (41) 99805-0732

Deixe uma resposta