Matemática – Geometria – Geometria Plana.

Mais um pouco de Polígonos

Já temos uma noção inicial de triângulos. Podemos dar mais um passo em frente. Vamos estudar os quadriláteros. Os quadriláteros, como diz o nome, são formados por quatro lados. O quadrilátero regular é o quadrado, ou seja, é formado por quatro lados congruentes e tem quatro ângulos internos que medem ${90}^0$ cada. Os lados são paralelos dois a dois.

São os quatro tipos de paralelogramos convexos possíveis de ser traçados.

Existe uma denominação genérica para os polígonos de quatro lados paralelos. São os paralelogramos. O quadrado é um exemplo de paralelogramo, mas existem vários outros.

Paralelogramo: – figura geométrica de quatro lados, paralelos dois a dois.

Quadrado: – é um paralelogramo que tem os quatro lados congruentes, formando ângulos retos, isto é, iguais a ${90}^0$.

Losango: – é um paralelo gramo que tem os quatro lados congruentes e paralelos dois a dois, porém apenas os ângulos opostos são necessariamente congruentes.

Retângulo: – é o paralelogramo que tem os lados congruentes e paralelos dois a dois, formando ângulos retos (${90}^{0}$).

O que é uma diagonal?

Diagonal é o segmento de reta que une dois vértices não consecutivos de um polígono.

Dessa forma, os paralelogramos possuem apenas um par de diagonais que se interceptam no centro da figura. As diagonais dividem o paralelogramo em quatro triângulos. Nos quadrados e losangos os triângulos são congruentes, pois as diagonais formam entre si ângulos retos. Nos retângulos e demais paralelogramos as diagonais formam ângulos suplementares e os triângulos são congruentes dois a dois.

A figura nos mostra o que foi descrito acima. Os triângulos têm um vértice comum que é o centro da figura geométrica.

Em todas essas situações é possível aplicar o Teorema de Pitágoras para solucionar questões relativas aos lados e ângulos dos paralelogramos.

Aplicando o que foi visto em relação aos ângulos formados por paralelas e uma transversal conseguiremos mostrar que a soma dos ângulos internos de qualquer paralelogramo é igual a ${360}^{0}$.

Área de um quadrado

Para constatar que a área de um quadrado é igual à medida de seu lado, elevada ao quadrado, basta construir um quadrado e dividir com linhas horizontais e verticais. Notamos que o número de linhas de quadrinhos é igual ao de colunas, ou seja, basta multiplicar o lado por ele mesmo.

$S = {l}\cdot{l} = {l^2}$

O quadrado da figura foi divido em cinco linhas por cinco colunas, isto é, tem 25 unidades de área. Já o retângulo foi dividido em 5 linhas e 12 colunas. Multiplicando ${{5}\cdot{12}} = 60$. Isso nos dá 60 unidades de área.

Área do retângulo

Também aqui fazemos a divisão em linhas e colunas, multiplicando os resultados. Isso nos dá que:

$S = {b}\cdot {h}$

Retângulo áureo

Um retângulo que tem comprimento $a$ e largura $b$ de modo que $\frac{a}{b} = \frac{b}{a-b} = \Phi$ é denominado retângulo áureo.

Retângulos em razão áurea

Isso permite construir um segundo retângulo, de modo que a razão entre suas áreas seja igual à razão áurea.

$\frac{a\times b}{b\times b} = \frac{b\times b}{b\times(a – b)} = \Phi$

$\Phi = \frac{b^{2} + b(a – b)}{b^{2}}$$\Leftrightarrow$$\Phi = \frac{b^{2}}{b^{2}} + \frac{b(a-b)}{b^{2}}$

Simplificando os fatores comuns ficamos com:

$\Phi = 1 + \frac{a – b}{b}$$\Leftrightarrow$$\Phi = 1 + \frac{1}{\Phi}$

${\Phi}^{2} = \Phi + 1$$\Leftrightarrow$${\Phi}^{2} – \Phi – 1 = 0$

Assim provamos ser um retângulo áureo. A solução dessa equação do segundo grau é:

$\Phi = \frac{1 +\sqrt{5}}{2} = 1,618$

Área do losango

Na figura podemos observar que se completamos um retângulo, usando as medidas das diagonais do losango, a área do mesmo será igual ao dobro do losango. Isto permite que façamos o cálculo da área, multiplicando as diagonais e dividindo o resultado por $2$

$ S = {{{d}\cdot{D}}\over{2}}$

À esquerda temos um losango, onde traçamos dois segmentos paralelos à cada diagonal, formando um retângulo. Desse retângulo percebemos que somente a metade faz parte do losango. Dividindo a área do retângulo por dois temos a área do losango. No paralelogramo, recortamos um triângulo em uma extremidade e o transferimos para a outra. Assim formamos um retângulo cuja área já sabemos calcular.

$S = {b}\cdot{h}$

Área de um triângulo

Deixei essa área para esse momento, pois fica mais fácil entender a fórmula a partir da área dos paralelogramos. Vejamos a figura.

Do lado esquerdo completou-se um retângulo, traçando um segmento $\overline{CD}$ paralelo ao lado $\overline{AB}$ e outro segmento $\overline{BD}$ paralelo ao segmento $\overline{AC}$. O lado $\overline{BC}$ divide o retângulo em dois triângulos iguais. Isso nos permite fazer o cálculo da área, dividindo a área do retângulo por dois. Na direita, também completamos um retângulo e fica fácil perceber que só a metade do retângulo faz parte do triângulo, levando ao mesmo modo de cálculo da área.

A área do triângulo, seja ele qual for, é calculada pelo produto da base pela altura, dividido por dois.

$S = {{{b}\cdot {h}}\over{2}}$

Apótema do quadrado.

No quadrado fica muito mais fácil determinar o apótema. Ele é um segmento que une o centro geométrico, intersecção das diagonais, ao meio de qualquer um dos lados. Isto nos leva a concluir que:

$a = {l\over 2}$

Raio da circunferência circunscrita

O raio da circunferência circunscrita, é o segmento que une o centro geométrico a qualquer um dos vértices ou seja, tem a medida da metade da diagonal.

$d² = l² + l²$$\Leftrightarrow$ $d = \sqrt{2\cdot{l²}}$

$d = l\sqrt{2}$

Sendo $R = {d\over2}$ $\Leftrightarrow$$R = {{l\sqrt{2}}\over{2}}$

Pentágono

O nome dessa figura geométrica vem do grego penta = cinco. Portanto um polígono de cinco lados é um pentágono. Para ser um pentágono regular, é necessário que seus lados e seus ângulos internos sejam congruentes.

Cinco lados congruentes, formando ângulos internos também congruentes.
As alturas em relação a um vértice e o lado oposto, as medianas dos lados, as mediatrizes dos lados e as bissetrizes dos ângulos internos se interceptam todas no mesmo ponto, que denominaremos centro do pentágono.
O pentágono tem ao todo 5(cinco) diagonais. De cada vértice partem duas, mas a mesma diagonal une sempre dois vértices. É notável observar que as diagonais se interceptam entre si, formando no interior uma miniatura do pentágono, apenas em posição invertida (de cabeça para baixo).
Os segmentos de reta que unem os vértices ao centro, determinam cinco triângulos isósceles. O ângulo do vértice central é obtido dividindo-se a circunferência ${360}^{0}$, em cinco partes iguais. Fazendo centro do compasso no ponto O, abertura até os vértices, podemos circunscrever uma circunferência ao pentágono.

O ângulo central $\alpha$, é obtido pela divisão da volta completa em 5(cinco) partes iguais.

$\alpha = {{{360}^{0}}\over{4}} = {72}^{0}$

O segmento $\overline{OP} = a$ é denominado apótema do pentágono e é o raio da circunferência inscrita na figura.

O triângulo $\Delta{(OCDO)}$ é um triângulo isósceles. Isso nos leva a concluir que os dois ângulos formados pelo lado $\overline{CD}$; os lados $\overline{OC}$ e $\overline{OD}$, são congruentes $\beta_{1} = \beta_{2} = \beta$. Como os ângulos internos do triângulo somam ${180}^0$, podemos concluir que:

$\beta_{1} + \beta_{2} + {72}^0 = {180}^{0}$

$\beta_{1} + \beta_{2} = {180}^{0} – {72}^{0}$

$2{\beta} = {108}^{0}$$\Leftrightarrow$$\beta = {{{108}^{0}}\over{2}} = {54}^{0}$

Apótema – é o segmento $\overline{OP} = a$ e que corresponde à altura do triângulo $\Delta{(OCDO)}$. Este segmento divide o lado $\overline{CD}$ em dois, permitindo aplicar o Teorema de Pitágoras no $\Delta{(OMDO)}$, onde o segmento $\overline{OD} = R$ é a hipotenusa, o apótema $a$ e a metade do lado $\overline{CD} = m$ são os catetos. Temos então:

${R}^2 = a^2 + m^2$ $\Leftrightarrow$ $ a^2 = R^2 – m^2$

$\sqrt{a^2} = \sqrt{{R^2 – {[R\cdot{cos (54)^0]}}^2}}$

$a = \sqrt{{R² – {[R\cdot{cos(54)^0}]}²}}$

Com centro do compasso no centro do pentágono, abertura igual ao apótema, pode-se inscrever uma circunferência que tangencia o meio de todos os lados.

Medida do ângulo interno

Cada ângulo interno é formado por dois ângulos dos triângulos em que dividimos o pentágono. Vimos que cada ângulo mede $54^0$. Logo, o ângulo interno do pentágono mede

$\hat{i} = 2\cdot{54^0} = 108^{0}$

Sendo cinco ângulos internos $S_{5} = 5\cdot {108^0} = 540^0$

Exercitar é preciso!

  1. Se um lote de esquina tem as medidas indicadas na figura a seguir, determine a área das duas partes que formam o L e a sua soma.
Podemos dividir o lote em dois retângulos. Um deles mede $(60,0)m X (25,0) m$ e o outro mede $(30,0)m X (25,0)m$.

Basta aplicarmos a forma de cálculo da área de um retângulo e teremos as duas áreas. Fazemos a soma e obtemos a área total do lote.

a) parte 1 $(60,0) m X (25,0)m $

$S_{1} = {b}\cdot {l}$ $\Leftrightarrow$ $ S_{1} = {(60,0)}\cdot{(25,0)} = 1500,0 m²$

b) parte 2 $(25,0) m X (30,0) m$

$S_{2} = {c}\cdot{h}$ $\Leftrightarrow$ $S_{2} = {(25,0)}\cdot{(30,0)} = 750,0 m²$

c) total $ S_{1} + S_{2} = S$

$S = 1500,0 + 750,0 = 2250,0 m²$

O total do lote é de 2250,0 m².

2. Numa quadra onde uma das ruas não é perpendicular à outra, o primeiro terreno ficou assim configurado.

Podemos dividir o lote em duas partes. Uma é um triângulo e a outra um retângulo.

Podemos identificar o triângulo $\Delta{(ABEA)}$ e o retângulo ${(BCDEB)}$.

Área do triângulo

$b = \overline{BE} = 35,0 m$

$h = \overline{AE} = {45,0 – 30,0}m$

$S_{1} = {{b\cdot h}\over 2}$$\Leftrightarrow$ $S_{1} ={{{35,0}\cdot{15,0}}\over{2}}$

$S_{1} = {{525,0}\over2} = 262,5 m²$

Área do retângulo

$b =\overline{BC} = 30,0 m$

$h = \overline{CD} = 35,0 m$

$S_{2} = b\cdot h$ $\Leftrightarrow$ $S_{2} = {30,0}\cdot{35,0} = 1050,0 m²$

Soma das áreas

$ S = S_{1} + S_{2}$ $\Leftrightarrow$$ S = 262,5 + 1050,0 = 1312,5 m²$

3. Um triângulo retângulo tem área $S = 30,0 cm²$ e sua hipotenusa mede $a = 13,0 cm$. Determine as medidas de seus catetos.

$S = {b\cdot c}\over{2} = 30,0 cm²$$\Leftrightarrow$ $b = {{60,0}\over{c}}$ (I)

$a² = b² + c² $ $\Leftrightarrow$ ${(13,0)}^2 = {\left({60,0}\over{c}\right)^2} + c^2 $

$169,0 = {{3600,0}\over{c²}}+ c²$$\Leftrightarrow$${169,0\cdot c²} = 3600 + c^4$

Fazendo $c² = x$, teremos $c^4 = x²$

$169,0 x = 3600,0 + x²$$\Leftrightarrow$ $x² – 169,0 x + 3600,0 = 0$

Usando a fórmula $ x = {{-b \pm\sqrt{b² – 4\cdot a\cdot c}}\over{2\cdot a}}$

$x = {{-(-169,0)\pm\sqrt{{169,0}^2 – 4\cdot 1\cdot 3600}}\over{2\cdot 1}}$

$ x = {{169,0\pm\sqrt{28561 – 14400}}\over{2}}$

$x = {{169,0\pm\sqrt{14161}}\over{2}}$$\Leftrightarrow$$x={{169,0\pm{119}}\over{2}}$

$x_{1} = {{169,0 + 119,0}\over{2}} = {288,0\over 2} = 144,0$

$S_{2} = {{169,0 – 119,0}\over{2}} = {{50.0}\over {2}} = 25,0$

Substituindo em $c² = x$

$c² = 144,0$$\Leftrightarrow$$\sqrt{c²} = \sqrt{144.0}$

$c = 12,0 cm$

$c² = 25$$\Leftrightarrow$$c =\sqrt{25,0} = 5,0 cm$

Os catetos do triângulo medem respectivamente $5,0 cm$ e $12,0 cm$

Agora é sua vez.

  1. Um poste de iluminação, projeta uma sombra de 8,0 m, quando o sol está em determinada inclinação. Se a altura do poste é de 6,0 m, determine a distância entre a extremidade superior do poste e a extremidade da sombra projetada.
  2. Um losango tem a diagonal menor medindo $d = 16,0 cm$. Se sua área é de ${S = 240,0 cm²$ qual é a medida de sua diagonal menor?
  3. Um retângulo tem a diagonal medindo $ d = 20,0 cm$ e sua largura é de $l = 12,0 cm$. Determine a medida do comprimento e a área do retângulo.
  4. Um triângulo retângulo tem hipotenusa igual a $a = 25,0 m$ e um de seus catetos mede $b = 20,0 m$. Determine a medida do outro cateto e também a área do triângulo.
  5. Um quadrado está inscrito em uma circunferência de raio ${R = 5,0 m$. Determine o raio da circunferência que se inscreve exatamente no interior desse quadrado, a medida do lado desse quadrado e a área do mesmo.
  6. Um retângulo mede $ b = 6,0 cm$ e $h = 10,0 cm$. Determine a medida de sua diagonal, o raio da circunferência que se inscreve totalmente no interior do mesmo, a área desse retângulo.
  7. Um paralelo gramo tem comprimento de $c = 25,0 cm$. Sua área é de $S = 300,0 cm²$. Calcule sua largura e a medida dos lados menores.
  8. O apótema de um quadrado mede $a = 6,0 m$. Determine a medida de seu lado, a medida das diagonais e sua área.
  9. Um losango tem as diagonais medindo $d=12,0 cm$ e $D=16,0 cm$. Determine a área desse losango, a medida de seu lado e depois calcule o raio da circunferência que se pode inscrever no seu interior. (Desafio)

Se tiver dúvidas, venha depressa pedir auxilio por um dos canais abaixo.

Curitiba, 30 de outubro de 2019

Décio Adams

[email protected]  

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732