01.066 – Matemática, Álgebra. Inequações 2º Grau – Exercícios

Hora de treinar a cuca!

Vamos determinar o conjunto verdade de algumas inequações do segundo grau, fazendo o estudo de sua variação de sinais em relação às raízes.

a)  $\color{navy}{ -5x^2 + 25x + 70 \lt 0 }$

Vamos começar por identificar os coeficientes numéricos, comparando com a forma geral. Temos que $ a = -5 $, $ b = 25 $ e $ c =  70 $.

Para facilitar os cálculos, iremos dividir todos os termos por $-5$, simplificando e teremos \[\frac{-5x^2}{-5} + \frac{25x}{-5} + \frac{70}{-5} \lt 0\] \[x^2 – 5x – 14 \lt 0\]  Agora os coeficientes passam a ser $ a = 1$, $b = -5$ e $c = -14$. É o momento de  determinar o discriminante \[\bbox[grey,5px,border:2px solid brown]{\color{maroon}{\Delta =  b^2 – 4\cdot a \cdot c}} \] \[\Delta = {(-5)^2 – 4\cdot 1\cdot (-14)}\] \[\Delta = 25 + 56 \] \[\Delta = 81\] O discriminante é positivo e portanto teremos duas raízes reais e diferentes que tornarão a expressão igual a zero. Calculando as raízes \[\bbox[grey,5px,border:2px solid red]{\color{maroon}{ x = {{-b\pm\sqrt \Delta}\over{2a}}}} \] \[ x = {{-(-5)\pm\sqrt{81}}\over {2\cdot 1}} \] \[x= {{5\pm 9}\over 2}\] \[x’ = {{5 + 9}\over 2} = {14\over 2} = 7\] \[ x” = {{5 – 9}\over 2} = {-4\over 2} = -2\]

Temos pois para valores que anulam a expressão em $x$ os números $-2 $ e $7$. Vejamos como fica o comportamento na Reta Real.

\[\underbrace{\color{navy}{-\infty\leftarrow =========}}{-2}\circ\underbrace{————-}{7}\circ\underbrace{\color{navy}{============\rightarrow\infty}}\]

Vimos que para valores externos das raízes, isto é, nesse caso para $x \lt -2$ ou $x \gt 7$ a expressão terá o mesmo sinal do coeficiente $a$ na inequação em sua forma original, sem simplificação. Vimos acima que $a = -5$ ou seja $ a \lt 0$, o que nos leva à conclusão de que o sinal  será negativo para esses valores. Já para os valores compreendidos entre $ -2 $ e $7$, a expressão terá o sinal contrário de $a$, portanto positivo. Assim deduzimos que o conjunto verdade dessa inequação é dado por: \[\bbox[silver, 5px,border:2px solid brown]{\color{navy}{ V = \{ x \in R | x \lt -2 \vee x \gt 7\}}} \]

b)$\color{navy}{ 3x^2 + 15x -72 \ge 0}$

Identificamos os coeficientes $ a = 3$, $b = 15$ e $c = -72$.  Observando esses valores, percebemos que é possível simplificar a expressão, dividindo todos os termos por $3$, o que nos dá \[\frac{3x^2}{3} +\frac{15x}{3} – \frac{-72}{3} \] \[ x^2 + 5x – 24 \ge 0\] Temos agora os novos coeficientes $ a= 1$, $b = 5 $ e $c = -24$. Vamos determinar o discriminante. \[\bbox[yellow,5px,border:2px solid brown]{\color{maroon}{\Delta =  b^2 – 4\cdot a \cdot c}} \] \[ \Delta = 5^2 – 4\cdot 1\cdot {-24} \] \[\Delta = 25 + 96 \] \[\Delta = 121\] Temos novamente $\Delta \gt 0$ e em consequência duas raízes reais e diferentes.

\[\bbox[lime,5px,border:2px solid brown]{\color{maroon}{ x = {{-b\pm\sqrt \Delta}\over{2a}}}} \] \[x = {{- 5\pm\sqrt{121}}\over{2\cdot 1}}\] \[x= {{-5\pm{11}}\over 2}\] \[x’ = {{-5 + 11}\over 2} = {6\over 2} = 3 \] \[x” = {{-5 – 11}\over 2} ={-16\over 2} = -8\] Lançando esses valores na Reta Real, fica:

\[\underbrace{\color{lime}{-\infty\leftarrow ============(-8)\bullet}}\underbrace{———-}\underbrace{\color{lime}{3\bullet============\rightarrow\infty}}\]

As raízes $-8$ e $ 3$ anulam a expressão, enquanto os valores externos tornam a expressão positiva, por ter no mesmo sinal de $a$. Os valores internos tornarão a expressão negativa, que é o sinal contrário de $a$. Como a inequação é $\ge 0$, o conjunto verdade será também dado por:

\[\bbox[silver,5px,border: 2px solid blue]{\color{navy}{V=\{ x \in R| x\le -8 \vee x \ge 3\}}} \]

c)$\color{blue} {x^2 -13x + 42 \le 0}$

Os coeficientes numéricos são $a=1$, $b= -13$ e $c = 42$. Notamos que agora não há simplificação a ser feita, pois o coeficiente $a =1$ e a expressão está na sua forma mais simples. Vejamos o discriminante:\[\bbox[yellow,5px,border:2px red solid]{\color{maroon}{\Delta =  b^2 – 4\cdot a \cdot c}} \] \[\Delta=(-13)^2 – 4\cdot 1\cdot 42 = 169 – 168 = 1\] Temos então que $\Delta \gt 0$ e novamente as raízes são reais e diferentes. \[\bbox[lime,5px,border:2px solid red]{\color{maroon}{ x = {{-b\pm\sqrt \Delta}\over{2a}}}} \] \[x={{-(-13\pm\sqrt{1}}\over{2\cdot 1}}\] \[x = {{13\pm 1}\over 2}\] \[x’= {{13 + 1}\over2} = {14\over 2} = 7\] \[x”={{13 – 1}\over 2} = {12\over 2} = 6 \] Lançando os valores $6$ e $7$ na Reta Real, teremos:

\[\underbrace{-\infty\leftarrow —————-}\underbrace{\color{lime}{6\bullet========7\bullet}}\underbrace{———————-\rightarrow\infty}\]

Para valores de $x$ a esquerda de $6$ ou a direita de $7$, a expressão será positiva, isto é, o mesmo sinal de $a$, que é positivo. Para valores internos do intervalo $6$ e $7$, a expressão será negativa, o sinal contrário de $a$. Assim sendo, a desigualdade da inequação é $\le$, o conjunto verdade será formado pelos números entre $6$ e $7$, inclusive.

\[\bbox[silver, 5px, border:2px solid blue]{\color{navy}{V = \{x \in R| 6 \le x \le 7\}}}\]

 d)$\color{blue}{ 3x^2 – 18x + 72 \gt 0} $

Notamos que é possível simplificar a expressão, pois todos os coeficientes são múltiplos de $3$. Então \[\frac{3x^2}{3} – \frac{18x}{3} + \frac{72}{3} \] \[ x^2 – 6x + 24 \gt 0\]

Agora os nossos coeficientes são $a = 1$, $b = -6$ e $c = 24$. Vamos ao discriminante.

\[\bbox[yellow,5px,border:2px red solid]{\color{maroon}{\Delta =  b^2 – 4\cdot a \cdot c}} \] \[ \Delta = {(-6)^2}\cdot 1\cdot {24} = 36 – 96 = -60\] Consequentemente constatamos que $\Delta \lt 0$, o que nos leva a conclusão de que nenhum número real tornará a expressão igual a zero. Como fica a inequação? Não temos ponto de referência para dizer que a expressão será positiva ou negativa para esse ou aquele valor. Vamos escolher três valores, sendo um negativo, o próprio zero e um positivo, substituindo e verificando o resultado. Sejam esses números $-3$, $0$ e $5$.

Para $x = -3$, teremos \[3x^2 -18x + 72 \gt 0\] \[ 3\cdot (-3)^2 – 18\cdot{(-3)} + 72 \gt 0\] \[{3\cdot 9} + 54 + 72 \gt 0 \] \[ 27 + 54 + 72 \gt 0\] \[ 153 \gt 0\] Esta sentença é verdadeira.

Para $x = 0$, teremos \[3\cdot 0 – 18\cdot 0 + 72 \gt 0\] \[ 0 + 0 + 72 \gt 0\] \[ 72 \gt 0\] Esta sentença é verdadeira.

Para $x = 5$, teremos \[3\cdot 5^2 – 18\cdot 5 + 72 \gt 0\] \[ 3\cdot 25 – 90 + 72 \gt 0\] \[75 – 90 + 72 \gt 0\] \[147 – 90 \gt 0\] \[ 57 \gt 0\] Sentença verdadeira. 

Vamos escolher mais um número negativo e dois positivos, para sanar qualquer dúvida. $-5$, $2$ e $7$.

Para $x=-5$, teremos \[3\cdot (-5)^2 – 18\cdot(- 5) + 72 \gt 0\] \[3\cdot 25 + 90 + 72 \gt 0\] \[75 +90 + 72 \gt 0\] \[ 237 \gt 0\] Sentença verdadeira. 

Para $x = 2$, teremos \[3\cdot 2^2 – 18\cdot 2 + 72 \gt 0 \] \[3\cdot 4 – 54 + 72 \gt 0\] \[ 12 – 54 + 72 \gt 0\] \[30 \gt 0\] Sentença verdadeira.

Para $x = 7$, teremos \[3\cdot 7^2 – 18\cdot 7 + 72 \gt 0\] \[3\cdot 49 – 126 + 72 \gt 0\] \[147 – 126 + 72 \gt 0 \] \[93 \gt 0\] Sentença verdadeira.  

Fica evidenciado que para qualquer número real colocado no lugar de $x$ nessa inequação, o resultado é uma sentença  verdadeira. Podemos concluir que o conjunto verdade é então o próprio conjunto dos números reais.

\[\bbox[silver,5px,border:2px solid blue]{\color{navy}{ V = R}}\]

Se a mesma inequação tivesse o sinal de desigualdade $\lt $ no lugar de $\gt$, essas sentenças todas seriam falsas e portanto o conjunto verdade da inequação seria um conjunto vazio. Assim

\[3x^2 – 18x + 72 \lt 0\] \[\bbox[silver,5px,border:2px solid blue]{\color{navy}{ V = \emptyset}}\] O mesmo aconteceria se tivéssemos os sinais de desigualdade $\ge$ ou $\le$, uma vez que teríamos a conjunção alternativa $\vee$, que tornaria as sentenças igualmente verdadeiras. É interessante notar que nestes casos o sinal da expressão é sempre igual ao sinal de $a$. Se $a\lt 0$, a expressão será sempre negativa, para qualquer número $x \in R$. Se $a \gt 0$, a expressão será positiva para qualquer valor de $x \in R$.

Agora é a sua vez de praticar. Analise os sinais das inequações e determine o conjunto verdade em cada caso.

a) $\color{navy}{x^2 – 17x + 70 \le 0}$

b) $\color{navy}{2x^2 + 4x – 48 \ge 0}$

c) $\color{navy}{ x^2 – 5x – 36 \gt 0} $

d)$\color{navy}{ 3x^2 – 108 \lt 0}$

e) $\color{navy}{5x^2 – 35x \lt 0}$

f)$\color{navy}{ 4x^2 – 12x + 44 \gt 0}$

g) $\color{navy}{5x^2 + 110 \ge 3x^2 + 14x} $

 h)$\color{navy}{ 6x^2 + 54 \le 0} $

i) $\color{navy}{4x -9 \gt x^2 }$

 j) $\color{navy}{x^2 – 19x + 88 \lt 0}$

l) $\color{navy}{ 7x^2 + 28x \gt 0}$

m) $\color{navy}{{\frac{2}{3}}x^2 -\frac{3}{5} \le 0} $

Obs.: Se tiver dúvida sobre a resolução de algum desses exercícios, faça contato comigo. Estes eu não vou resolver logo em seguida. Legal? Procure se virar nos trinta, meu!

Curitiba, 10 de junho de 2016

Revisado e republicado em 11 de janeiro de 2017.

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732

Deixe uma resposta