043.0 – Matemática, Álgebra – Produtos Notáveis – Quadrado da soma de dois números

O que é algo notável? 

Tudo que tem uma característica que chama atenção, tem algo além do comum, pode ser apontado como algo notável.  Usamos o adjetivo notável, quando percebemos uma coisa extraordinária em alguma coisa, situação ou fato. Então, a expressão Produtos notáveis tem algo de importante e com aplicações relevantes em algum momento futuro. Vejamos quais são esses casos e o que eles tem de tão diferente.

– Quadrado da soma de dois números. 

Você provavelmente irá pensar que é mais fácil efetuar a soma e depois calcular a potência, ou seja elevar ao quadrado. Nisso você tem toda razão. Por que então vamos dedicar tempo especial a esse assunto? Lembre-se que já estudamos álgebra, onde números são substituídos por letras ou mesmo outros símbolos.  Se for esse o caso, ou houver letras e números, como fica o resultado? Vamos ver?

$\underbrace{ (a + b)} $

É a adição dos números representados por letras e fica indicada. Vamos elevar ao quadrado:

$\underbrace{( a + b)^2} $

Temos a multiplicação de um binômio por ele mesmo, sendo a o primeiro termo e b o segundo.

$\underbrace{(a + b)}\cdot{\underbrace{(a + b)}} $

Multiplicamos cada um dos termos do primeiro binômio, por cada um dos termos do segundo e ficará:

$\underbrace{ {a}\cdot {a}} +\underbrace{{a}\cdot{b}} +\underbrace {{b}\cdot {a} }+ \underbrace{{b}\cdot{b}}$

${ a^2 + \underbrace{ab + ba} + b^2} $

Há dois termos semelhantes, embora estejam com a ordem das letras invertida, isso não significa nada. Podemos usar a propriedade comutativa da multiplicação e colocar ambos na mesma ordem. Aqui estamos vendo uma aplicação da propriedade vista quando estudamos as quatro operações, está lembrado?. Lá ela não parecia ter importância, mas aqui fica claro que para alguma coisa ela serve.

${ a^2 +\underbrace{ ab + ab} + b^2}$

O coeficiente numérico que não é escrito, sempre é igual a unidade (1). Então:

${a^2 +\underbrace{ 1\cdot {ab} + 1\cdot {ab}} + b^2}$

Fazemos a redução dos termos semelhantes (somando seus coeficientes numéricos) e fica:

${a^2 +\underbrace{(1 + 1)}\cdot {ab} + b^2}$

${ a^2 + 2ab + b^2}$

O resultado é um trinômio, cujo primeiro termo é o primeiro termo da soma elevado ao quadrado, o segundo termo é o dobro do produto do primeiro pelo segundo termo e o terceiro termo é o quadrado do segundo termo da soma. Isso nos permite estabelecer a regra que pode ser usada em qualquer caso de uma soma de dois números, elevada ao quadrado, pouco importando ser somente de letras ou letras e números.

O quadrado da soma de dois números é igual ao quadrado do primeiro termo, mais o duplo produto (dobro) do primeiro termo pelo segundo, mais o quadrado do segundo termo”.

Bom para lembrar!

Se observar bem, verá que o primeiro termo da soma (a), aparece primeiro com o expoente 2, depois com o expoente 1 e por último com o expoente 0, o que o torna igual a 1 (unidade). Já o segundo termo tem os expoentes em ordem inversa: 0, 1 e por último 2.

Expoentes do a: 2>1>0

Expoentes do b: 0<1<2

Se a = 9 b = 5, podemos substituir esses valores nas duas formas e efetuar as operações. Os resultados devem ser iguais. Vejamos:

$\underbrace{(a + b)^2}$

$\underbrace{(9 + 5)^2}$

$ 14^2 = 196 $

$ a^2 + 2ab + b^2$

$ 9^2 +\underbrace{ 2\cdot 9\cdot 5} + 5^2$

$ 81 +90 + 25 = 171 + 25 = 196 $

NOTA: Vemos que na substituição os resultados numéricos são os mesmos, o que valida a regra.

Vamos aplicar isso em alguns exemplos:

a) $\underbrace{(2x + y)^2}$

Primeiro termo é$ 2x$ o segundo termo é$ y$

${ {(2x)}^2 + \underbrace{2\cdot 2\cdot{x}{y}} + y^2} $

${\underbrace{(2^2)\cdot (x^2)} +\underbrace{2\cdot 2\cdot{x}{y}} + (y^2)}$

$ {4x^2 + 4xy + y^2}$

b) $\underbrace{(3m + 5)^2}$

O primeiro termo é $3m$ e o segundo termo é $5$.

$ \underbrace{(3m)^2} +\underbrace{ 2\cdot 3\cdot {m}\cdot 5} + 5^2$

$ {9m^2 + 30m + 25 }$

c) $\underbrace{( 6 + 4xy)^2}$

O primeiro termo é $6$ e o segundo termo é $4xy$.

$6^2 +\underbrace{ 2\cdot 6\cdot {(4xy)}} +\underbrace {(4xy)^2} $

${36 + 48xy + 16x^{2}y^{2} }$

d) $\underbrace{( p + 3q)^2}$

Primeiro termo é $p$ o segundo termo é $3q$.

$ p^2 + \underbrace{2\cdot {p}\cdot{3q}} + {(3q)}^2 $

$ {p^2 + 6pq + 9q^2}$

Resolva, aplicando a regra vista, os quadrados da soma de dois números na lista a seguir.

a)${(3ax + 2by)}^2= ?$

b)${(7n + 3m)}^2= ?$

c)${(2 + 8mx)}^2= ?$

d)${(5a + 3b)}^2= ?$

e)${(11 + 5mn)}^2= ?$

f)${(4mx + 7n)}^2= ?$

g)${(6xy^2 + 2x^2y)}^2= ?$

h)${(9pq + 13)}^2= ?$

Curitiba, 09 de junho de 2018.

Décio Adams

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/adamsdecio

@AdamsDcio

Telefone: (41) 3019-4760

Celulares: (41) 99805-0732

01.061 – Matemática, Álgebra. Inequação do primeiro grau.

Inequação! Que é isso?

Lembremos que uma equação é uma igualdadeentre duas quantidades, representadas por números, letras e expressões de letras com números. O prefixo in é uma negação. Assim a palavra inequação, poderíamos dizer, que é a negação de uma equação. Em outras palavras é uma desigualdade. Existem alguns símbolos que usamos para indicar essas desigualdades como:

  • “Menor do que”                                               $\Rightarrow\color{maroon}{ \mathbf{\lt}} $
  • “maior do que”                                                $\Rightarrow \color{maroon}{\mathbf{\gt}} $
  • “menor ou igual a”                                          $\Rightarrow \color{maroon}{\mathbf{\le}} $
  • “maior ou igual a”                                            $\Rightarrow\color{maroon}{\mathbf{ \ge}} $
  • “Diferente”                                                        $\Rightarrow\color{maroon}{\mathbf{\neq}} $
  • “Não menor do que”                                       $\Rightarrow\color{maroon}{\mathbf{\not\lt}} $
  • “Não maior do que”                                         $\Rightarrow\color{maroon}{\mathbf{\not\gt}} $
  • “Não menor ou igual a”                                    $\Rightarrow\color{maroon}{\mathbf{\not\le}}$
  • “Não maior ou igual a”                                    $\Rightarrow\color{maroon}{ \mathbf{\not\ge}}$

Em determinados momentos, todos esses símbolos podem aparecer em uma expressão matemática. No caso presente, estudo das inequações, iremos usar principalmente os quatro primeiros. Vejamos alguns exemplos:

  • $\bbox[5px,border:2px solid brown]{\color{navy}{2x -3 \lt 0}} $
  • $\bbox[5px,border:2px solid brown]{\color{navy}{ x + 7 \gt 2}} $
  • $\bbox[5px,border:2px solid brown]{\color{navy}{ 8 -x \ge 5}}$
  • $\bbox[5px,border:2px solid brown]{\color{navy}{ 4 + x \le 2x}} $
  • A determinação do conjunto verdade de uma inequação, é feita de modo semelhante ao procedimento adotado nas equações, com algumas peculiaridades próprias.
  • Vamos pegar como exemplo a primeira das quatro citadas acima:
  •  $\bbox[5px,border:2px solid brown]{\color{navy}{2x – 3\lt 0}}$.
  • O objetivo é obter uma desigualdade que indique onde estão localizados os valores que servem para substituir  nessa inequação. Temos então que deixar o isolado no primeiro membro.
  • \[ 2x – 3 + 3 \lt 0 + 3 \] \[2x \lt 3 \] \[ {{2x}\over 2} \lt {3\over 2} \] \[ x \lt {3\over 2} \]
  • Isso nos mostra que todos os números reais, menores do que o número 3/2 servem para x, isto é, transformam a expressão em uma sentença verdadeira. Logo: \[\bbox[5px,border:2px solid brown]{\color{navy}{ V =\left\{ x\in R | {x\lt {3\over 2}}\right\}}} \]
  • Representando o conjunto dos números reais na Reta Real, o conjunto verdade dessa inequação será formado por todos os números associados aos pontos dessa reta, à esquerda do ponto que corresponde ao número 3/2.
*** QuickLaTeX cannot compile formula:


\begin{tikzpicture}
\begin{axis}[
title=Reta num\'{e}rica,
axis x line=center,
axis y line=none,
xmin = -10,
xmax = +10,
ymin = -1,
ymax = 1,
xtick={-10,-9,...,9,10},
height=3cm,
width=\textwidth,
xlabel=$x$,
ylabel=$y$,
axis line style=
]

\addplot[blue,very thick, domain=-10:10] coordinates {
(-10,0) (1.35,0)
};

\draw[orange,thick] (axis cs:1.5,0) circle (0.08cm);

\end{axis}
\end{tikzpicture}
[/latex
<ul>
 	<li>A falta de espaço, impede a visualização de todo conjunto verdade no gráfico, que abrange todos os números até</li>
 	<li>$-\infty$.</li>
</ul>
<ul>
 	<li style="text-align: justify">Vejamos o segundo exemplo.</li>
 	<li style="text-align: justify">$\bbox[5px,border:2px solid brown]{\color{navy}{ x + 7 \gt 2}} $</li>
 	<li>Procedendo da mesma maneira, teremos:</li>
 	<li style="text-align: justify">\[ x + 7 - 7 \gt 2 - 7 \] \[ x \gt -5 \]</li>
 	<li style="text-align: justify">O conjunto verdade será</li>
 	<li style="text-align: justify">\[\bbox[5px,border:2px solid brown]{\color{navy}{ V =\{x\in R|{x \gt -5}\}}} \]</li>
 	<li style="text-align: justify">Igualmente aqui, se representarmos a reta numérica real, o conjunto verdade será formado por todos os números à direita do número (<strong>-5</strong>), que fica excluído, assim como todos os números à sua esquerda.</li>
</ul>
[latex display="true"]

\begin{tikzpicture}
\begin{axis}[
title=Reta num\'{e}rica,
axis x line=center,
axis y line=none,
xmin = -10,
xmax = +10,
ymin = -1,
ymax = 1,
xtick={-10,-9,...,9,10},
height=3cm,
width=\textwidth,
xlabel=$x$,
ylabel=$y$,
axis line style=
]

\addplot[blue,very thick, domain=-10:10] coordinates {
(-4.85,0) (10,0)
};

\draw[orange,thick] (axis cs:-5,0) circle (0.08cm);

\end{axis}
\end{tikzpicture}


*** Error message:
Argument of \pgfmathfloatparse@@ has an extra }.
leading text: \end{axis}
Paragraph ended before \pgfmathfloatparse@@ was complete.
leading text: \end{axis}
Extra }, or forgotten \endgroup.
leading text: \end{axis}
Extra \else.
leading text: \end{axis}
Paragraph ended before \pgfplotsplothandlerdeserializepointfrom@default@ was 
Package PGF Math Error: The function `thisrow' already exists.
leading text: ]
Package PGF Math Error: The function `thisrowno' already exists.
leading text: ]
Package pgfplots Error: Sorry, nested axis environments are not supported. Please move the inner axis environment below \end{axis} and use alignment options (for example named nodes, see manual) to place it at the desired position.
leading text: ]
TeX capacity exceeded, sorry [input stack size=5000].

  • A vez da terceira:
  • $\bbox[5px,border:2px solid brown]{\color{navy}{ 8 -x \ge 5}} $
  • Aplicando o mesmo procedimento, ficamos com:
  • \[ 8 – 8 – x \ge 5 – 8 \] \[ -x \ge -3 \]
  • Observe que o os dois membros da inequação são precedidos do sinal $-$, o que nos indica que para melhor interpretação, devemos multiplicar a expressão toda $-1$. Lembrando da reta numérica, vamos observar que a posição dos números negativos, fica invertida em relação ao zero$(0)$, isto é, quanto maior for o módulo, mais à esquerda ele se situa. A consequência disso é que, a multiplicação de uma inequação por $-1$, inverte o sentido da desigualdade, ou seja se era $\le$, passa para $\ge$ e vice-versa. Vamos ver como fica nosso exemplo.
  • \[ {(-x \ge – 3)}\cdot{(-1)} \] \[ x\le 3 \]
  • O conjunto verdade dessa inequação será pois:
  • \[\bbox[5px,border:2px solid brown]{\color{navy}{ V = \{x\in R|{x\le 3}\}}} \]
  • Neste caso o número $3$, faz parte do conjunto verdade. Ficam excluídos apenas os números à direita do $3$. Na Reta Real fica:

Rendered by QuickLaTeX.com

  • O último exemplo:
  • $\bbox[5px,border:2px solid brown]{\color{navy}{ 4 + x \le 2x}} $
  • Aplicando o raciocínio par isolar a variável, temos:
  • \[ 4 – 4 + x \le 2x – 4 \] \[ x – 2x \le 2x – 2x – 4 \] \[ -x \le -4 \]
  • Novamente é preciso multiplicar por $-1$, e inverter o sinal da desigualdade.
  • \[{(-x \le -4)}\cdot{(-1)} \] \[ x \ge 4 \]
  • O conjunto verdade será composto por todos os números reais, desde o $4$ inclusive, até infinito$\infty$.
  • \[\bbox[5px,border:2px solid brown]{\color{navy}{V = \{x\in R|{x\ge 4}\}}} \]
  • Na Reta Real,  teremos:

Rendered by QuickLaTeX.com

  • O final da resolução de qualquer inequação de primeiro grau será sempre a variável, seguida de um sinal de desigualdade e depois um número. Se a variável tiver sinal negativo, devemos multiplicar por $\color{Brown}{-1}$ e inverter o sinal da desigualdade. Isso não pode ser esquecido. 

Vamos “malhar”?

  • Determine o conjunto verdade das inequações a seguir.
  • $\color{navy}{ 4x – 7 \lt 2x + 1}$
  • $\color{navy}{ 11 + 3x \gt – 8} $
  • $\color{navy}{ – 6 + 2x \ge 3x + 1}$
  • $\color{navy}{ 6 \le 5 – 3x} $
  • $\color{navy}{ 3y + 4 \le 7 – y} $
  • $\color{navy}{15 – 4x \lt 11 +x}$
  • $\color{navy}{ 6x + 5\gt 4x – 7}$
  • $\color{navy}{ 2 + 7x \ge 6x + 4} $

 Curitiba, 21 de maio de 2016.

Curitiba, 07 de janeiro de 2018 (Revisto e republicado)

Décio Adams

[email protected]

[email protected]

www.facebook.com/decio.adams

www.facebook.com/livros.decioadams

www.facebook.com/decioadams.matfisonline

@adamsDcio

Fone: (41) 3019-4760

Celular: (41) 99805-0732

01.043 – Matemática, Álgebra. Produtos notáveis.

O que é algo notável? 

Tudo que tem uma característica que chama atenção, tem algo além do comum, pode ser apontado como algo notável. Então, a expressão Produtos notáveis tem algo de importante e com aplicações relevantes em algum assunto mais adiante. Vejamos quais são esses casos.

Quadrado da soma de dois números. 

Você provavelmente irá pensar que é mais fácil efetuar a soma e depois calcular a potência, ou seja elevar ao quadrado. Mas, se os números estiverem representados por letras, ou letras e números, como fica? Vamos ver?

$$\color{BrickRed}{ a + b} $$

É a adição dos números representados por letras e fica indicada. Vamos elevar ao quadrado:

$$\color{OrangeRed}{{( a + b)}^2}$$

Temos a multiplicação de um binômio por ele mesmo, sendo a o primeiro termo e b o segundo.

${(a + b)}\cdot{(a + b)} $

$ {a}\cdot {a} + {a}\cdot{b} + {b}\cdot {a} + {b}\cdot{b}$

${ a^2 + ab + ba + b^2} $

Há dois termos semelhantes, embora estejam com a ordem das letras invertida, isso não significa nada. Podemos usar a propriedade comutativa da multiplicação e colocar ambos na mesma ordem. Aqui estamos vendo uma aplicação da propriedade vista no estudo das quatro operações. Lá ela não parecia ter importância, mas aqui já fica claro que para alguma coisa serve.

${ a^2 + ab + ab + b^2}$

$$\color{NavyBlue}{ a^2 + 2ab + b^2}$$

O resultado é um trinômio, cujo primeiro termo é o primeiro termo da soma elevado ao quadrado, o segundo termo é o dobro do produto do primeiro pelo segundo termo e o terceiro termo é o quadrado do segundo termo da soma. Isso nos permite estabelecer a regra que pode ser usada em qualquer caso de uma soma de dois números, elevada ao quadrado.

O quadrado da soma de dois números é igual ao quadrado do primeiro termo, mais o duplo produto (dobro) do primeiro termo pelo segundo, mais o quadrado do segundo termo”.

Bom para lembrar!

Se observar bem, verá que o primeiro termo da soma, aparece primeiro com o expoente 2, depois com o expoente 1 e por último com o expoente 0, o que o torna igual a 1 (unidade). Já o segundo termo tem os expoentes em ordem inversa: 0, 1 e por último 2.

Vamos aplicar isso em alguns exemplos:

a) $\color{Indigo}{{(2x + y)}^2}$

Primeiro termo é 2x o segundo termo é y

${{(2x)}^2 + 2\cdot 2\cdot{x}{y} + y^2}$

${{(2^2)\cdot (x^2)}\cdot 2\cdot{x}{y} + (y^2)}$

$$\color{Purple}{4x^2 + 4xy + y^2}$$

b) $\color{Indigo}{{(3m + 5)}^2}$

O primeiro termo é 3m e o segundo termo é 5.

$ {{(3m)}^2 + 2\cdot 3\cdot {m}\cdot 5 + 5^2}$

$$\color{Purple}{9m^2 + 30m + 25}$$

c) $\color{Indigo}{{( 6 + 4xy)}^2}$

O primeiro termo é 6 e o segundo termo é 4xy.

${6^2 + 2\cdot 6\cdot {(4xy)} + {(4xy)}^2 }$

$$\color{Purple}{36 + 48xy + 16x^2y^2}$$

d) $\color{Indigo}{{( p + 3q)}^2}$

Primeiro termo é p o segundo termo é 3q.

$ p^2 + 2\cdot p\cdot 3q + {(3q)}^2 $

$$\color{Purple}{p^2 + 6pq + 9q^2}$$

Resolva aplicando a regra vista os quadrados da soma de dois números, na lista a seguir.

a)$\color{Orchid}{{(3ax + 2by)}^2}$

b)$\color{Orchid}{{(7n + 3m)}^2}$

c)$\color{Orchid}{{(2 + 8mx)}^2}$

d)$\color{Orchid}{{(5a + 3b)}^2}$

e)$\color{Orchid}{{(11 + 5mn)}^2}$

f)$\color{Orchid}{{(4mx + 7n)}^2}$

g)$\color{Orchid}{{(6xy^2 + 2x^2y)}^2}$

h)$\color{Orchid}{{(9pq + 13)}^2}$

Quadrado da diferença de dois números

A mesma coisa que acontece no caso da soma, também ocorre com a diferença. Os números são representados por letras, formando no final a multiplicação de dois binômios iguais. Seja o exemplo:

$$\color{BrickRed}{{( a – b)}^2}$$

A letra a é o primeiro termo e a letra b é o segundo termo da diferença. 

$$\color{NavyBlue}{{( a – b)}{(a – b)}}$$

Cada termo do primeiro fator é multiplicado por todos os termos do segundo fator. O que resulta em:

${a}\cdot {a} + {a}\cdot {(-b) } + {(-b)}\cdot {a} + {-b}\cdot{b} $

$ a^{(1+ 1)} – ab – ba + b^{(1 + 1)} $

$$\color{Orchid}{ a^2 – 2ab + b^2}$$

Os dois termos (- ab) e (-ba), são semelhantes, pois a ordem dos fatores pode ser alterada sem causar problemas no resultado. Basta aplicar a propriedade comutativa da multiplicação. Assim passamos a ter que:

“O quadrado da diferença entre dois números é igual ao quadrado do primeiro termo, menos o duplo produto (dobro) do primeiro termo pelo segundo, mais o quadrado do segundo termo”.

Bom para lembrar!

Também aqui os expoentes das partes literais seguem a mesma sequência como acontece no quadrado da soma. A única diferença é que os sinais que precedem os termos, são alternadamente +, – e +. Isso facilita a recordação do resultado de um produto notável desse tipo.

Vamos exercitar:

a) $\color{Indigo}{{(x – y)}^2}$

O primeiro termo é a letra x e o segundo termo é a letra y.

${(x – y )}{(x – y)}$

$$\color{Orchid}{x^2 – 2xy + y^2}$$

b) $\color{Indigo}{{(3x – 2y)}^2}$

O primeiro termo é 3x e o segundo termo é 2y.

${(3x)}^2 – 2\cdot {(3x)}{(2y)} +{(2y)}^2$

$$\color{Orchid}{9x^2 – 12xy + 4y^2}$$

c) $\color{Indigo}{{(ab – bc)}^2}$

O primeiro termo é ab e o segundo termo é bc.

${(ab – bc)} {(ab – bc)} $

${(ab)}^2 – 2\cdot{(ab)}{(bc)} + {(bc)}^2 $

$$\color{Indigo}{{a^2b^2 – 2ab^2c + b^2c^2}}$$

d) $\color{Indigo}{{(5 – 2a)}^2}$

$ {(5 – 2a)}{(5 – 2a)}$

$ {5^2 – 2\cdot 5\cdot{2a} + {(2a)}^2}$

$$\color{Orchid}{ 25 – 20a + 4a^2 }$$

Obs.: Note que tanto o quadrado da soma como da diferença, resulta sempre em um trinômio, onde há dois termos que são quadrados e um termo que representa o produto dos dois termos. Costumeiramente esses trinômios recebem o nome de Trinômio quadrado perfeito. Voltaremos a falar neles em outro momento, ou seja por ocasião da  fatoração. 

Resolva aplicando a regra acima, os quadrados das diferenças entre dois números da seguinte sequência.

a)$\color{Brown}{{(5ax – 3bx)}^2}$

b)$\color{Brown}{{(Axy – Byz)}^2}$

c)$\color{Brown}{{(4rp^2 – 3pq)}^2}$

d)$\color{Brown}{{(5xy^3 – 3xy^2)}^2}$

e)$\color{Brown}{{(mz – my)}^2}$

f)$\color{Brown}{{(2aj – 3bj)}^2}$

g)$\color{Brown}{{(6gx – 7gy)}^2}$

h)$\color{Brown}{{(3my – 4n)}^2}$

Produto da soma de dois números pela sua diferença.

Sejam os números representados pelas letras b. A soma será (a + b) e a diferença será (a – b). Vamos multiplicar o binômio soma pelo binômio diferença.

$\color{Indigo}{(a + b)}\cdot\color{Orchid} {(a – b)}$

${a}{a} + {a}{(-b)} + {b}{a} + {b}{(-b)} $

${ a^2 – ab + ab – b^2}$

$$\color{Blue}{a^2 – b^2}$$

Notamos que os dois termos semelhantes, são simétricos e por isso sua soma é igual a zero, ou seja, se anulam. O resultado é um binômio diferença entre os quadrados dos dois números. 

“O produto da soma de dois números pela sua diferença, é igual à diferença entre seus quadrados”.

Poderíamos também dizer: O produto da soma pela diferença de dois números é igual ao quadrado do primeiro menos o quadrado do segundo termo”. 

Vamos exercitar um pouco.

a) $\color{Sepia}{{(mn + n)}{(mn – n)}}$

$ {{(mn)}^2 – n^2 }$

$$\color{NavyBlue}{ m^2n^2 – n^2 }$$

b) $\color{Sepia}{{(7 – 3x)} {(7 + 3x)}}$

$ {{7}^2 – {(3x)}^2 }$

$$\color{NavyBlue}{ 49 – 9x^2 }$$

c) $\color{Sepia}{{(4x + 3z)}{(4x – 3z)}}$

${(4x)}^2 – {(3z)}^2 $

$$\color{NavyBlue}{16x^2 – 9z^2 }$$

d) $\color{Sepia}{{( 1 + ab)}{( 1 – ab)}}$

$ {1^2 -{(ab)}^2 }$

$\color{NavyBlue}{1 – a^2b^2 }$

Resolva os produtos das somas pelas respectivas diferenças entre dois números, aplicando a regra.

a)$\color{Sepia}{{(2a + 3b)}{(2a – 3b)}}$

b)$\color{Sepia}{{(mn – 5)} {(mn + 5)}}$

c)$\color{Sepia}{{(3ax + 2by)}{(3ax – 2by)}}$

d)$\color{Sepia}{{(mx + ny)}{(mx – ny)}}$

e)$\color{Sepia}{{(7 – 5b)}{(7 + 5b)}}$

f)$\color{Sepia}{{(6az + 3by)}{(6az – 3by)}}$

g)$\color{Sepia}{{(3bp + 5br)}{(3bp – 5br)}}$

h)$\color{Sepia}{{(5qp – 7rp)}{(5qp + 7rp)}}$

Curitiba, 09 de abril de 2016. Republicado em 17 de dezembro de 2017, junto com uma bateria de exercícios de aplicação. Revisto em 07 de junho de 2018.

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732

01.021 – Matemática, aritimética. Adição e subtração de números relativos.

Operações com números relativos – adição.

  • Números com o mesmo sinal e sinais opostos.

Vamos usar exemplos práticos. Você e seu irmão trabalham, recebendo por dia de serviço. Se seu trabalho rende $\color{Navy}{R\$ 100,00}$ por dia e o de seu irmão $\color{Navy}{R\$ 110,00}$ por dia. Quanto terão a receber ao final de um dia de serviço?

É fácil dizer que a soma será de $\color{Brown}{100,00 + 110,00 = 210,00}$. Representando os valores ganhos como números positivos, podemos escrever:

$$\color{Maroon}{(+100) + (+110,00)= + 210,00}$$

Vamos supor que vocês compraram uma muda de roupas para cada um, gastando $\color{Navy}{R\$ 90,00}$ na sua roupa e $\color{Navy}{R\$ 85,00}$ na roupa do seu irmão. O dinheiro gasto, podemos representar por valores negativos, pois irão diminuir o saldo disponível.

  • $$\color{Navy}{(- 90,00) + (- 85,00) = -175,00}$$

Vamos determinar o saldo que sobra no seu bolso e no de seu irmão.

  • $$\color{Navy}{(+100,00) + (- 90,00)= +10,00}$$

No seu bolso haverá o saldo de $\color{Brown}{R$ 10,00}$.

  • $$\color{Navy}{(+ 110,00) +(- 85,00)= +25,00}$$

No bolso de seu irmão, haverá um saldo de $\color{Brown}{R$ 25,00}$.

Continue lendo “01.021 – Matemática, aritimética. Adição e subtração de números relativos.”