Matemática – Geometria – Geometria Plana.

Estudo detalhado do triângulo equilátero.

Depois de termos visto o Teorema de Pitágoras, podemos aplicar esse conhecimento na determinação de elementos notáveis dos triângulos equiláteros.

Como foi visto acima, é o único triângulo classificado como figura geométrica regular. Isso implica em que o traçado de suas alturas, bissetrizes dos ângulos, medianas e mediatrizes sejam coincidentes, interceptando-se em um mesmo ponto que é o centro geométrico do triângulo ou seja é o baricentro, ortocentro, incentro e circuncentro. Iremos estabelecer modos de determinação das medidas da altura, do apótema e do raio da circunferência circunscrita.

Esses três segmentos traçados a partir dos vértices, representam todas as linhas mencionadas acima. Altura, bissetriz, mediana e mediatriz de cada lado e vértice. Interceptam-se no CG da figura.

O ponto $M$, divide o lado $\overline{BC}$ em dois segmentos congruentes, equivalentes à metade do lado do triângulo. Portanto $\overline{MC} = {{l}\over{2}}$, determinando assim um triângulo retângulo $\Delta{(AMCA)}$, onde podemos aplicar o Teorema de Pitágoras.

$\overline{AC} = l $ $\Rightarrow$ hipotenusa.

$\overline{AM} = h $ $\Rightarrow$ altura do triângulo e é um dos catetos.

$\overline{MC} = {{l}\over{2}}$ $\Rightarrow$ cateto.

${l}² = h² + ({{l}\over {2}})²$ $\Leftrightarrow$ $h² = l² – {{l²}\over{4}}$

$\sqrt{h²} = {{{{4}\cdot{l²}} – l²}\over{4}}$

$h = {{{3}\cdot{l²}}\over{4}}$ $\Leftrightarrow$ $h = \sqrt {{{3}\cdot{l²}}\over{4}} $

$h = {{{l}\cdot\sqrt{3}}\over{2}}$

O apótema equivale ao segmento que representa o raio da circunferência inscrita no interior do retângulo equilátero.

O apótema é um dos catetos do $\Delta{BMOB}$, o raio da circunferência circunscrita é a hipotenusa e $\overline{BM} = {{l}\over{2}}$ é o outro cateto.

No triângulo destacado, temos:

$\overline{BO}$ $\Rightarrow$ raio da circunferência circunscrita (hipotenusa). Equivale à diferença entre a altura e o apótema.

$R = h – a $

$\overline{BM} ={{l}\over{2}}$ $\Rightarrow$ cateto.

$a$ $\Rightarrow$ apótema que é igual ao raio da circunferência inscrita.

$R² = a² + ({{l}\over{2}})²$ $\Leftrightarrow$ ${h – a}² = a² + {{l²}\over{4}}$

${h² – 2ah + a²} = a² + {{l²}\over{4}}$ $\Leftrightarrow$ $h² – 2ah =a² – a² +{{l²}\over{4}}$

$h² – {{l²}\over{4}} = 2ah$ $\Leftrightarrow$ $a = {{h^2 – {{l^2}\over{4}}}\over{2h}}$

$a = {{\left({{l}\sqrt{3}\over{2}}\right)^2 -{l²}}\over{{2{l}\sqrt{3}}\over{2}}}$$\Leftrightarrow$$a = {{{3{l}² – {l}²}\over{4}}\over{l\sqrt{3}}}$

$a = {{2{l}²\over{4}}\over{l\sqrt{3}}}$ $\Leftrightarrow$ $a = {{l²}\over{2}}\cdot{{1}\over{l\sqrt{3}}}\cdot{\sqrt{3}\over\sqrt{3}}$

$a = {{l\sqrt{3}}\over{6}}$

Estabelecemos acima que ${R = h – a}$ de onde podemos deduzir a expressão de $R$ em função do lado do triângulo.

$R = {{l}\sqrt{3}\over{2}} – {{l}\sqrt{3}\over{6}}$

$R = {{{3\cdot{{l}\sqrt{3}}} – {{l}\sqrt{3}}}\over{6}}$

$R = {{2{l}\sqrt{3}}\over{6}}$

$R = {{l}\sqrt{3}\over{3}}$

Comparando esses três elementos, podemos estabelecer que:

${{{h}\over{a}} = {{{l}\sqrt{3}\over{2}}\over{{l}{\sqrt{3}}\over{6}}}}$ $\Leftrightarrow$ ${{{h}\over{a}} = {{{l}\sqrt{3}\over{2}}\cdot {{6}\over{{l}\sqrt{3}}}}}$

${h\over {a}} = {\not{6}\over\not{2}}$ $\Leftrightarrow$ $ a = {1\over3}\cdot h $

${{{h}\over{R}} = {{{{l}\sqrt{3}}\over{2}}\over{{{l}\sqrt{3}}\over{3}}}}$$\Leftrightarrow$${{{h}\over{R}} = {{{{l}\sqrt{3}}\over{2}}\cdot{{3}\over{l}\sqrt{3}}}}$

${{h}\over{R}} = {3\over2}$

$R = {2\over3}\cdot h$

${{a}\over{R}} = {{{{l}\sqrt{3}}\over{6}}\over{{{l}\sqrt{3}}\over{3}}}$$\Leftrightarrow$$ {{a}\over{R}} = {{{{l}\sqrt{3}}\over{6}}\cdot{{3}\over{{l}\sqrt{3}}}}$

$a = {1\over2}\cdot R$

Vejamos as circunferências inscrita e circunscrita num triângulo equilátero.

Temos aí uma circunferência inscrita num triângulo equilátero. Note que o raio da mesma é o apótema do triângulo. Este equivale à ${1\over3}$ da altura do triângulo.
Aqui, além da inscrita, temos também a circunferência circunscrita, cujo raio é exatamente igual ao dobro do apótema, ou seja ${2\over3}$ da altura do triângulo.

Perímetro

Denominamos perímetro a soma das medidas de todos os lados de um polígono. Se imaginarmos fazer uma cerca ao redor do polígono usando arame, qual seria o comprimento de um fio desse produto para dar uma volta completa? Com certeza todos dirão que é só somar os lados. Pronta a resposta. Por isso dizemos que:

Perímetro de um triângulo equilátero é a soma de seus três lados.

$ p = l + l + l$ $\Leftrightarrow$$ p = 3\cdot l$

Vamos exercitar um bocado.

  1. Um triângulo equilátero tem uma circunferência inscrita, cujo raio mede $7,0 cm$. Pede-se determinar o raio da circunferência circunscrita, a altura do triângulo e a medida do lado. Calcule também a área do triângulo.

$ r = a = {1\over2}\cdot{R}$ $\Leftrightarrow$$ 7 = {R\over2}$

$R = {7,0}\cdot{2} = 14,0 cm$

$h = a + R$

$h = 7,0 + 14,0 = 21,0 cm$

$h = {{{l}\sqrt{3}}\over{2}}$

$21,0 = {{{l}\sqrt{3}}\over{2}}$$\Leftrightarrow$${(21,0)}\cdot{2} = {l}\sqrt{3}$

${{(42,0)}\over\sqrt{3}} = l $ $\Leftrightarrow$${{{(42,0)}\cdot\sqrt{3}}\over\sqrt{3}} = l$

$l = {{{(42,0)}\cdot\sqrt{3}}\over{3}} = {{(14,0)}\cdot\sqrt{3}} cm$

$S_{3} = {{b\cdot h}\over2}$

$b = l = {(14,0)\cdot\sqrt{3}}$

$h = 21.0 cm$

$S_{3}= {{{(14,0)\cdot\sqrt{3}}\cdot{(21,0)}}\over2}$

$S_{3} = {(147,0)}\sqrt{3} cm$

2. Uma circunferência de raio $R = 30,0 cm$ é circunscrita a um triângulo equilátero. Pede-se determinar o raio da circunferência inscrita, a altura e o lado do triângulo, além de sua área.

$R = 30,0 cm$

$a = {R\over2}$

$a ={{(30,0)}\over{2}} = 15,0 cm$

$r = a = 15,0 cm$

$h = R + a$ $\Leftrightarrow$ $ h = 30,0 + 15,0 = 45,0 cm$

$h = {{{l}\cdot\sqrt{3}}\over{2}}$

$(45,0) = {{{l}\sqrt{3}}\over{2}}$$\Leftrightarrow$${{{(45,0)}\cdot{2}}\over\sqrt{3}} = l$

${{{(90,0)}\sqrt{3}}\over\sqrt{3}} = i$$\Leftrightarrow$$ l = {{(90,0)\sqrt{3}}\over{3}}$$\Leftrightarrow$$l = (30,0)\sqrt{3} cm$

$S_{3}= {{b\cdot h}\over2}$

$S_{3}= {{(30,0)\sqrt{3}\cdot (45,0)}\over2}$

$S_{3}= {(15,0)\cdot(45,0)\sqrt{3}}$$\Leftrightarrow$ $S_{3}= (675,0)\sqrt{3} cm²$

3. Um triângulo equilátero tem o lado medindo $ l = 27,0 m$. Pede-se determinar o raio da circunferência circunscrita, o raio da circunferência inscrita, a altura e a área da figura.

$R = {{l\sqrt{3}}\over 3}$

Sendo $ l = 27,0 m$, ficamos com:

$R = {{(27,0)\sqrt{3}}\over{3}}$$\Leftrightarrow$$R = (9,0)\sqrt{3} m$

$r = a = {{l\sqrt{3}}\over6}$

$r = {{(27,0)\sqrt{3}}\over 6}$$\Leftrightarrow$$ r = {{(9,0)\sqrt{3}}\over 2} m$

$h = {{l\sqrt{3}}\over 2}$

$h = {{(27,0)\sqrt{3}}\over 2}$$\Leftrightarrow$$ h = (13,5)\sqrt{3} m$

$S_{3}= {{b\cdot h}\over2}$

$S_{3} = {{(27,0)\cdot(13,5)\sqrt{3}}\over 2}$

$S_{3} = 182,25\sqrt{3} m²$

4. Um proprietário de terras, deseja cercar uma área em forma de triângulo equilátero, com 5(cinco) fios de arame liso. Se um dos lados da área mede $l = 200,0 m$, quantos metros de fio ele irá gastar para completar a cerca?

Se $p = 3\cdot l$$\Leftrightarrow$$ p = 3\cdot{200,0} = 600,0 m$

Cada fio de arame consumirá $600,0 m$ do material. Se ele quer colocar 5(cinco) fios, irá gastar:

$P = 5\cdot p$ $\Leftrightarrow$$ P = 5\cdot{600,0} = 3000,0 m$

Chegou a sua vez. Mostre do que é capaz.

  1. Se um círculo de raio $r = 12,0 cm$ está inscrito em um triângulo equilátero, determine: a) o raio do círculo circunscrito; b) a altura do triângulo; c) o lado do triângulo; d) a área do triângulo.
  2. Um triângulo equilátero está inscrito em uma circunferência de raio $R = 25,0 cm$. Calcule o raio do círculo inscrito nesse triângulo, a altura do triângulo e o seu lado.
  3. Um triângulo equilátero tem altura de $h = 18,0 cm$. Quer-se saber quanto mede o raio da circunferência inscrita, o lado do triângulo e a sua área. É possível circunscrever um círculo perfeito a esse triângulo? Se for, qual é seu raio.
  4. O perímetro de um triângulo equilátero (soma dos lados) é $p = 54,0 cm$. Determine sua altura, o apótema, o raio da circunferência circunscrita e a área do triângulo.
  5. Um triângulo equilátero, justapõe-se a outro igual a ele, formando um losango. Sendo as diagonais desse losango de medidas $d = 12,0 cm$ e $D ={(8,0)\sqrt{3}}cm$, determine sua área, a medida dos lados, o raio da circunferência inscrita e o raio da circunferência circunscrita aos vértices mais distantes.
  6. Um homem possui no terreno de sua casa uma sobra onde pretende colocar cerca murada. A forma é de um triângulo equilátero e vai precisar de 24 unidades de tijolos de 25,0cm, para cada fileira de um lado. Se quer fazer o muro com 8 (oito) fileiras de tijolos, quantos tijolos irá precisar para completar a obra?
  7. Dois irmãos são sócios em 50% para cada um de um terreno em forma de triângulo equilátero. Eles querem construir suas casas e para isso precisam demarcar as parcelas que cabem a cada um. Visando proteger o terreno de intrusos, quando ali forem colocar o material para a construção, querem construir muros de todos os lados e também na divisória. Se o lado do terreno mede $l = 50,0 m$, quantos metros de muros terão que construir? Se o código de edificações em área residencial da prefeitura permite ocupar 40% da área, qual é a área máxima que cada um deles poderá ocupar com a sua moradia?
  8. A diagonal menor de um losango, divide a figura em dois triângulos equiláteros. Se $d = 15,0 m$, determine a área de cada triângulo e a área do losango. Determine a diagonal maior da figura resultante. Determine o raio da circunferência que poderá ser inscrita na figura completa.

No caso de haver dificuldades, não hesite. Peça ajuda por meio de qualquer um dos canais abaixo.

Curitiba, 30 de outubro de 2019

Décio Adams

[email protected]  

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732

Matemática – Geometria – Geometria Plana.

Mais um pouco de Polígonos

Já temos uma noção inicial de triângulos. Podemos dar mais um passo em frente. Vamos estudar os quadriláteros. Os quadriláteros, como diz o nome, são formados por quatro lados. O quadrilátero regular é o quadrado, ou seja, é formado por quatro lados congruentes e tem quatro ângulos internos que medem ${90}^0$ cada. Os lados são paralelos dois a dois.

São os quatro tipos de paralelogramos convexos possíveis de ser traçados.

Existe uma denominação genérica para os polígonos de quatro lados paralelos. São os paralelogramos. O quadrado é um exemplo de paralelogramo, mas existem vários outros.

Paralelogramo: – figura geométrica de quatro lados, paralelos dois a dois.

Quadrado: – é um paralelogramo que tem os quatro lados congruentes, formando ângulos retos, isto é, iguais a ${90}^0$.

Losango: – é um paralelo gramo que tem os quatro lados congruentes e paralelos dois a dois, porém apenas os ângulos opostos são necessariamente congruentes.

Retângulo: – é o paralelogramo que tem os lados congruentes e paralelos dois a dois, formando ângulos retos (${90}^{0}$).

O que é uma diagonal?

Diagonal é o segmento de reta que une dois vértices não consecutivos de um polígono.

Dessa forma, os paralelogramos possuem apenas um par de diagonais que se interceptam no centro da figura. As diagonais dividem o paralelogramo em quatro triângulos. Nos quadrados e losangos os triângulos são congruentes, pois as diagonais formam entre si ângulos retos. Nos retângulos e demais paralelogramos as diagonais formam ângulos suplementares e os triângulos são congruentes dois a dois.

A figura nos mostra o que foi descrito acima. Os triângulos têm um vértice comum que é o centro da figura geométrica.

Em todas essas situações é possível aplicar o Teorema de Pitágoras para solucionar questões relativas aos lados e ângulos dos paralelogramos.

Aplicando o que foi visto em relação aos ângulos formados por paralelas e uma transversal conseguiremos mostrar que a soma dos ângulos internos de qualquer paralelogramo é igual a ${360}^{0}$.

Área de um quadrado

Para constatar que a área de um quadrado é igual à medida de seu lado, elevada ao quadrado, basta construir um quadrado e dividir com linhas horizontais e verticais. Notamos que o número de linhas de quadrinhos é igual ao de colunas, ou seja, basta multiplicar o lado por ele mesmo.

$S = {l}\cdot{l} = {l^2}$

O quadrado da figura foi divido em cinco linhas por cinco colunas, isto é, tem 25 unidades de área. Já o retângulo foi dividido em 5 linhas e 12 colunas. Multiplicando ${{5}\cdot{12}} = 60$. Isso nos dá 60 unidades de área.

Área do retângulo

Também aqui fazemos a divisão em linhas e colunas, multiplicando os resultados. Isso nos dá que:

$S = {b}\cdot {h}$

Retângulo áureo

Um retângulo que tem comprimento $a$ e largura $b$ de modo que $\frac{a}{b} = \frac{b}{a-b} = \Phi$ é denominado retângulo áureo.

Retângulos em razão áurea

Isso permite construir um segundo retângulo, de modo que a razão entre suas áreas seja igual à razão áurea.

$\frac{a\times b}{b\times b} = \frac{b\times b}{b\times(a – b)} = \Phi$

$\Phi = \frac{b^{2} + b(a – b)}{b^{2}}$$\Leftrightarrow$$\Phi = \frac{b^{2}}{b^{2}} + \frac{b(a-b)}{b^{2}}$

Simplificando os fatores comuns ficamos com:

$\Phi = 1 + \frac{a – b}{b}$$\Leftrightarrow$$\Phi = 1 + \frac{1}{\Phi}$

${\Phi}^{2} = \Phi + 1$$\Leftrightarrow$${\Phi}^{2} – \Phi – 1 = 0$

Assim provamos ser um retângulo áureo. A solução dessa equação do segundo grau é:

$\Phi = \frac{1 +\sqrt{5}}{2} = 1,618$

Área do losango

Na figura podemos observar que se completamos um retângulo, usando as medidas das diagonais do losango, a área do mesmo será igual ao dobro do losango. Isto permite que façamos o cálculo da área, multiplicando as diagonais e dividindo o resultado por $2$

$ S = {{{d}\cdot{D}}\over{2}}$

À esquerda temos um losango, onde traçamos dois segmentos paralelos à cada diagonal, formando um retângulo. Desse retângulo percebemos que somente a metade faz parte do losango. Dividindo a área do retângulo por dois temos a área do losango. No paralelogramo, recortamos um triângulo em uma extremidade e o transferimos para a outra. Assim formamos um retângulo cuja área já sabemos calcular.

$S = {b}\cdot{h}$

Área de um triângulo

Deixei essa área para esse momento, pois fica mais fácil entender a fórmula a partir da área dos paralelogramos. Vejamos a figura.

Do lado esquerdo completou-se um retângulo, traçando um segmento $\overline{CD}$ paralelo ao lado $\overline{AB}$ e outro segmento $\overline{BD}$ paralelo ao segmento $\overline{AC}$. O lado $\overline{BC}$ divide o retângulo em dois triângulos iguais. Isso nos permite fazer o cálculo da área, dividindo a área do retângulo por dois. Na direita, também completamos um retângulo e fica fácil perceber que só a metade do retângulo faz parte do triângulo, levando ao mesmo modo de cálculo da área.

A área do triângulo, seja ele qual for, é calculada pelo produto da base pela altura, dividido por dois.

$S = {{{b}\cdot {h}}\over{2}}$

Apótema do quadrado.

No quadrado fica muito mais fácil determinar o apótema. Ele é um segmento que une o centro geométrico, intersecção das diagonais, ao meio de qualquer um dos lados. Isto nos leva a concluir que:

$a = {l\over 2}$

Raio da circunferência circunscrita

O raio da circunferência circunscrita, é o segmento que une o centro geométrico a qualquer um dos vértices ou seja, tem a medida da metade da diagonal.

$d² = l² + l²$$\Leftrightarrow$ $d = \sqrt{2\cdot{l²}}$

$d = l\sqrt{2}$

Sendo $R = {d\over2}$ $\Leftrightarrow$$R = {{l\sqrt{2}}\over{2}}$

Pentágono

O nome dessa figura geométrica vem do grego penta = cinco. Portanto um polígono de cinco lados é um pentágono. Para ser um pentágono regular, é necessário que seus lados e seus ângulos internos sejam congruentes.

Cinco lados congruentes, formando ângulos internos também congruentes.
As alturas em relação a um vértice e o lado oposto, as medianas dos lados, as mediatrizes dos lados e as bissetrizes dos ângulos internos se interceptam todas no mesmo ponto, que denominaremos centro do pentágono.
O pentágono tem ao todo 5(cinco) diagonais. De cada vértice partem duas, mas a mesma diagonal une sempre dois vértices. É notável observar que as diagonais se interceptam entre si, formando no interior uma miniatura do pentágono, apenas em posição invertida (de cabeça para baixo).
Os segmentos de reta que unem os vértices ao centro, determinam cinco triângulos isósceles. O ângulo do vértice central é obtido dividindo-se a circunferência ${360}^{0}$, em cinco partes iguais. Fazendo centro do compasso no ponto O, abertura até os vértices, podemos circunscrever uma circunferência ao pentágono.

O ângulo central $\alpha$, é obtido pela divisão da volta completa em 5(cinco) partes iguais.

$\alpha = {{{360}^{0}}\over{4}} = {72}^{0}$

O segmento $\overline{OP} = a$ é denominado apótema do pentágono e é o raio da circunferência inscrita na figura.

O triângulo $\Delta{(OCDO)}$ é um triângulo isósceles. Isso nos leva a concluir que os dois ângulos formados pelo lado $\overline{CD}$; os lados $\overline{OC}$ e $\overline{OD}$, são congruentes $\beta_{1} = \beta_{2} = \beta$. Como os ângulos internos do triângulo somam ${180}^0$, podemos concluir que:

$\beta_{1} + \beta_{2} + {72}^0 = {180}^{0}$

$\beta_{1} + \beta_{2} = {180}^{0} – {72}^{0}$

$2{\beta} = {108}^{0}$$\Leftrightarrow$$\beta = {{{108}^{0}}\over{2}} = {54}^{0}$

Apótema – é o segmento $\overline{OP} = a$ e que corresponde à altura do triângulo $\Delta{(OCDO)}$. Este segmento divide o lado $\overline{CD}$ em dois, permitindo aplicar o Teorema de Pitágoras no $\Delta{(OMDO)}$, onde o segmento $\overline{OD} = R$ é a hipotenusa, o apótema $a$ e a metade do lado $\overline{CD} = m$ são os catetos. Temos então:

${R}^2 = a^2 + m^2$ $\Leftrightarrow$ $ a^2 = R^2 – m^2$

$\sqrt{a^2} = \sqrt{{R^2 – {[R\cdot{cos (54)^0]}}^2}}$

$a = \sqrt{{R² – {[R\cdot{cos(54)^0}]}²}}$

Com centro do compasso no centro do pentágono, abertura igual ao apótema, pode-se inscrever uma circunferência que tangencia o meio de todos os lados.

Medida do ângulo interno

Cada ângulo interno é formado por dois ângulos dos triângulos em que dividimos o pentágono. Vimos que cada ângulo mede $54^0$. Logo, o ângulo interno do pentágono mede

$\hat{i} = 2\cdot{54^0} = 108^{0}$

Sendo cinco ângulos internos $S_{5} = 5\cdot {108^0} = 540^0$

Exercitar é preciso!

  1. Se um lote de esquina tem as medidas indicadas na figura a seguir, determine a área das duas partes que formam o L e a sua soma.
Podemos dividir o lote em dois retângulos. Um deles mede $(60,0)m X (25,0) m$ e o outro mede $(30,0)m X (25,0)m$.

Basta aplicarmos a forma de cálculo da área de um retângulo e teremos as duas áreas. Fazemos a soma e obtemos a área total do lote.

a) parte 1 $(60,0) m X (25,0)m $

$S_{1} = {b}\cdot {l}$ $\Leftrightarrow$ $ S_{1} = {(60,0)}\cdot{(25,0)} = 1500,0 m²$

b) parte 2 $(25,0) m X (30,0) m$

$S_{2} = {c}\cdot{h}$ $\Leftrightarrow$ $S_{2} = {(25,0)}\cdot{(30,0)} = 750,0 m²$

c) total $ S_{1} + S_{2} = S$

$S = 1500,0 + 750,0 = 2250,0 m²$

O total do lote é de 2250,0 m².

2. Numa quadra onde uma das ruas não é perpendicular à outra, o primeiro terreno ficou assim configurado.

Podemos dividir o lote em duas partes. Uma é um triângulo e a outra um retângulo.

Podemos identificar o triângulo $\Delta{(ABEA)}$ e o retângulo ${(BCDEB)}$.

Área do triângulo

$b = \overline{BE} = 35,0 m$

$h = \overline{AE} = {45,0 – 30,0}m$

$S_{1} = {{b\cdot h}\over 2}$$\Leftrightarrow$ $S_{1} ={{{35,0}\cdot{15,0}}\over{2}}$

$S_{1} = {{525,0}\over2} = 262,5 m²$

Área do retângulo

$b =\overline{BC} = 30,0 m$

$h = \overline{CD} = 35,0 m$

$S_{2} = b\cdot h$ $\Leftrightarrow$ $S_{2} = {30,0}\cdot{35,0} = 1050,0 m²$

Soma das áreas

$ S = S_{1} + S_{2}$ $\Leftrightarrow$$ S = 262,5 + 1050,0 = 1312,5 m²$

3. Um triângulo retângulo tem área $S = 30,0 cm²$ e sua hipotenusa mede $a = 13,0 cm$. Determine as medidas de seus catetos.

$S = {b\cdot c}\over{2} = 30,0 cm²$$\Leftrightarrow$ $b = {{60,0}\over{c}}$ (I)

$a² = b² + c² $ $\Leftrightarrow$ ${(13,0)}^2 = {\left({60,0}\over{c}\right)^2} + c^2 $

$169,0 = {{3600,0}\over{c²}}+ c²$$\Leftrightarrow$${169,0\cdot c²} = 3600 + c^4$

Fazendo $c² = x$, teremos $c^4 = x²$

$169,0 x = 3600,0 + x²$$\Leftrightarrow$ $x² – 169,0 x + 3600,0 = 0$

Usando a fórmula $ x = {{-b \pm\sqrt{b² – 4\cdot a\cdot c}}\over{2\cdot a}}$

$x = {{-(-169,0)\pm\sqrt{{169,0}^2 – 4\cdot 1\cdot 3600}}\over{2\cdot 1}}$

$ x = {{169,0\pm\sqrt{28561 – 14400}}\over{2}}$

$x = {{169,0\pm\sqrt{14161}}\over{2}}$$\Leftrightarrow$$x={{169,0\pm{119}}\over{2}}$

$x_{1} = {{169,0 + 119,0}\over{2}} = {288,0\over 2} = 144,0$

$S_{2} = {{169,0 – 119,0}\over{2}} = {{50.0}\over {2}} = 25,0$

Substituindo em $c² = x$

$c² = 144,0$$\Leftrightarrow$$\sqrt{c²} = \sqrt{144.0}$

$c = 12,0 cm$

$c² = 25$$\Leftrightarrow$$c =\sqrt{25,0} = 5,0 cm$

Os catetos do triângulo medem respectivamente $5,0 cm$ e $12,0 cm$

Agora é sua vez.

  1. Um poste de iluminação, projeta uma sombra de 8,0 m, quando o sol está em determinada inclinação. Se a altura do poste é de 6,0 m, determine a distância entre a extremidade superior do poste e a extremidade da sombra projetada.
  2. Um losango tem a diagonal menor medindo $d = 16,0 cm$. Se sua área é de ${S = 240,0 cm²$ qual é a medida de sua diagonal menor?
  3. Um retângulo tem a diagonal medindo $ d = 20,0 cm$ e sua largura é de $l = 12,0 cm$. Determine a medida do comprimento e a área do retângulo.
  4. Um triângulo retângulo tem hipotenusa igual a $a = 25,0 m$ e um de seus catetos mede $b = 20,0 m$. Determine a medida do outro cateto e também a área do triângulo.
  5. Um quadrado está inscrito em uma circunferência de raio ${R = 5,0 m$. Determine o raio da circunferência que se inscreve exatamente no interior desse quadrado, a medida do lado desse quadrado e a área do mesmo.
  6. Um retângulo mede $ b = 6,0 cm$ e $h = 10,0 cm$. Determine a medida de sua diagonal, o raio da circunferência que se inscreve totalmente no interior do mesmo, a área desse retângulo.
  7. Um paralelo gramo tem comprimento de $c = 25,0 cm$. Sua área é de $S = 300,0 cm²$. Calcule sua largura e a medida dos lados menores.
  8. O apótema de um quadrado mede $a = 6,0 m$. Determine a medida de seu lado, a medida das diagonais e sua área.
  9. Um losango tem as diagonais medindo $d=12,0 cm$ e $D=16,0 cm$. Determine a área desse losango, a medida de seu lado e depois calcule o raio da circunferência que se pode inscrever no seu interior. (Desafio)

Se tiver dúvidas, venha depressa pedir auxilio por um dos canais abaixo.

Curitiba, 30 de outubro de 2019

Décio Adams

[email protected]  

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732

Matemática – Geometria – Geometria Plana.

Triângulo retângulo

Como mencionei no final do post anterior, vamos dedicar esse especialmente ao estudo do triângulo retângulo.

Triângulo retângulo pitagórico

Já no tempo a.C., o matemático e filósofo grego Pitágoras, estabeleceu uma relação importante entre os lados de um triângulo retângulo. Analisando detidamente os lados desse polígono, descobriu que, se construirmos um quadrado com as medidas dos respectivos lados do triângulo, os dois quadrados correspondentes aos catetos, somados tem a mesma área do quadrado que corresponde à hipotenusa.

O quadrado correspondente ao cateto b tem 9(nove) unidades de área; o quadrado correspondente ao cateto c tem 16(dezesseis) unidades de área e o quadrado correspondente à hipotenusa, tem 25(vinte e cinco) unidades de área. Os quadrados dos catetos, têm a mesma área do quadrado da hipotenusa.

Essa conclusão é denominada de Teorema de Pitágoras. Seu enunciado ficou assim estabelecido:

O quadrado da hipotenusa é igual à soma dos quadrados dos catetos”.

${{a^2} = {b^2} + {c^2}}$

Nem todos os triângulos retângulos têm os lados na exata medida para resultarem em três números inteiros. Na verdade a imensa maioria deles resulta em lados com aproximação decimal. Aqueles que têm os lados na exata medida, são denominados Triângulos Pitagóricos.

Vamos tomar dois exemplos e mostrar como funciona.

  1. Determinar a hipotenusa de um triângulo retângulo cujos catetos medem respectivamente 6,0 cm e 8,0 cm.

${b = 6,0 cm}$ e ${c = 8,0 cm}$

${{a^2} = {b^2} + {c^2}}$ $\Leftrightarrow$ $a^2 = {(6,0)}² + {(8,0)}² $

$a² = 36,0 + 64,0$ $\Leftrightarrow$ $ a = \sqrt{100,0} = 10,0 cm$

Esse é mais um exemplo de triângulo pitagórico.

2. Determinar o outro cateto do triângulo, que tem por hipotenusa um segmento de 8,0 cm e um dos catetos mede 5,0 cm.

$a = 8,0 cm$

$b = 5,0 cm$

$a² = b² +c²$ $\Leftrightarrow$ $(8,0)² = (5,0)² + c²$

$64,0 = 25,0 + c²$ $\Leftrightarrow$ $c² = 64,0 – 25,0$

$\sqrt{c²} = \sqrt{39,0}$ $\Leftrightarrow$ $c \simeq 6,245$

Este já não é triângulo pitagórico, embora o teorema se aplique também nele.

3. Vamos determinar a altura do triângulo da figura, em relação ao lado maior $a = 7,0 m$, sendo os dois outros lados respectivamente $b = 5,0 m$ e $c =3,0m$.

Temos um triângulo escaleno obtusângulo.

Vamos traçar pelo vértice $\hat{A}$, a altura em relação ao lado $a$.

A altura h dividiu o triângulo $\Delta{ABCA}$ em dois triângulos retângulos.

Temos agora os triângulos retângulos $\Delta{ABMA}$ e $\Delta{ACMA}$.

No primeiro:

$c $ $\Rightarrow$ hipotenusa

$m ; h$ $\Rightarrow$ catetos

$c² = h² + m² $ $\Leftrightarrow$ $h² = c² – m²$ (I)

No segundo

$b$ $\Rightarrow$ hipotenusa

$n; h$$\Rightarrow$ catetos

$b² = h² + n²$ $\Leftrightarrow$ $h² = b² – n²$ (II)

Igualando as expressões (I) e (II), teremos:

$ c² – m² = b² – n²$ (III)

Na figura temos que: $m + n = a$ $\Leftrightarrow$$m = a – n$ (IV)

Substituindo (IV) em (III): $c² – {(a – n)}² = b² – n²$

$c² -(a² – 2an + n²) = b² – n²$ $\Leftrightarrow$ $c² – b² = a² – 2an + n² – n²$

$(3,0)² – (5,0)² = (7,0)² – 2\cdot{7,0}\cdot{n}$

$9,0 – 25,0 = 49,0 – 14,0 n$ $\Leftrightarrow$ $14,0n = 40,0 + 25,0$

$n = {{65,0}\over{14}}$$\Leftrightarrow$ $ n = 4,64 m$

$h²= b² – n²$ $\Leftrightarrow$ $ h² = (5,0)² – (4,64)²$

$h² = 25,0 – 21,53$ $\Leftrightarrow$ $ h = \sqrt{3,47} \simeq 1,86 m$

4. Determine a altura de um triângulo equilátero cujos lados medem 5,0 m cada.

No triângulo equilátero, a altura divide o triângulo em dois triângulos retângulos congruentes.

Sabemos que os lados medem $ 5,0 m$. A altura divide o lado oposto ao vértice $\hat{A}$ em duas metades, de modo que os dois triângulos resultantes são congruentes.

$a = 5,0 m$; $b = 5,0 m$ e $c = 5,0 m$

Aplicando o Teorema de Pitágoras a um dos triângulos retângulos, teremos:

$b² = h² + {\left(a\over 2\right)}²$ $\Leftrightarrow$ $(5,0)² = h² + {\left(5\over 2\right)}²$ $\Leftrightarrow$ $h² = 25,0 – {{25}\over{4}}$

$\sqrt{h²} = \sqrt{(25,0 – 6,25)}$ $\Leftrightarrow$ $ h = \sqrt{18,75} = 4,33 m$

Demonstramos que a medida aproximada da altura do triângulo equilátero é $h\simeq 4,33 m$.

Hora de se virar sozinho

  1. Um triângulo isósceles têm os lados congruentes medindo 8,0 cm e o lado oposto ao ângulo formado pelos primeiros, mede 6,0 cm. Determine a altura desse triângulo em relação ao lado menor.
  2. Um triângulo retângulo tem a hipotenusa medindo 13,0 cm e um dos catetos mede 5,0 cm. Determine a medida do outro cateto e também a altura em relação à hipotenusa.
  3. Um triângulo equilátero obtuso, mede 10,0 cm na sua base e a altura até seu vértice é de 5,0 cm. Determine a medida dos dois lados congruentes.
  4. Um triângulo escaleno tem os lados com as medidas $a = 7,0 cm$, $b = 9,0 cm$ e $c= 12,0 cm$. Determine a altura em relação ao lado maior e as medidas dos segmentos que ela determina sobre este lado $c$.
  5. Se a altura de um triângulo retângulo, em relação à hipotenusa mede $h = 9,0 cm$ e um dos catetos mede $b = 12,0 cm$, determine o outro cateto $c$, a hipotenusa e os dois segmentos em que a hipotenusa fica dividida.
  6. Sendo a base de um triângulo isósceles $a = 18,0 cm$, e a altura medindo $h = 24,0cm$, pede-se determinar os dois lados congruentes.

Havendo dificuldades, faça contato comigo por meio de um dos canais abaixo listados, podendo inclusive apresentar exercícios ou dificuldades sobre o assunto, provenientes de outras fontes como cursos presenciais, EAD ou livros e apostilas.

Curitiba, 26 de outubro de 2019

Décio Adams

[email protected]  

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732

Matemática – Geometria – Geometria Plana.

Linhas Poligonais

Linhas poligonais abertas são as linhas em que as extremidades não se tocam. Podem ser curvas, segmentos de reta, um tendo extremidade comum com o seguinte.

A linha não fecha, isto é, não forma uma área delimitada em seu interior.

As linhas poligonais fechadas formam o que denominamos geralmente de figuras geométricas ou polígonos. Esse nome vem do grego: poli = mais de dois e gono = ângulo. Então a figura fechada com mais de dois ângulos é um polígono.

O polígono com menor número de lados é o triângulo, depois vêm os quadriláteros, os pentágonos, hexágonos e assim sucessivamente. O polígono com um número infinito de lados é uma circunferência ou pode ser uma elipse também.

Polígonos regulares e irregulares

Regulares são os polígonos formados por lados iguais. Os lados são os segmentos de reta compreendidos entre dois ângulos consecutivos.

Irregulares são os polígonos formados por lados cujas medidas não são iguais.

Triângulos

Triângulo equilátero, que é também equiângulo é todo triângulo formado por três lados congruentes e em consequência os ângulos internos também são congruentes. Esses ângulos são todos agudos, isto é, medem menos de $90^{0}$.

É o único triângulo que podemos classificar como um polígono regular. Seus lados são congruentes e seus ângulos internos também.

Triângulo isósceles: – é o triângulo que tem dois lados congruentes. A altura, traçada em relação ao lado oposto, divide o triângulo em dois triângulos retângulos congruentes.

O ângulo formado pelos lados congruentes pode ser agudo, reto ou obtuso.

Triângulo escaleno: – é o triângulo que tem os três lados com medidas diferentes. Pode ser retângulo, acutângulo ou obtusângulo.

Triângulo retângulo:tem necessariamente um ângulo reto, podendo os outros dois ser congruentes ou diferentes, mas sempre menores que$90^{0}$

Os lados do ângulo reto são denominados catetos e o terceiro lado, maior, que é oposto ao ângulo reto, denomina-se hipotenusa.

Triângulo obtusângulo: – tem um ângulo obtuso, sendo os outros dois agudos.

Os triângulos obtusângulos podem ser escalenos ou isósceles. É essencial que um dos três ângulos internos seja maior que $90^{0}$.

Soma dos ângulos internos do triângulo.

Vejamos a figura .

Prolongando dois lados e no vértice traçando uma paralela ao outro lado, formamos dois ângulos correspondentes aos ângulos da base e um que é oposto pelo vértice ao terceiro. Pela figura vemos que esses três ângulos somados totalizam $180^{0}$. Essa soma é sempre a mesma, para qualquer triângulo.

Como podemos observar na figura, os ângulos formados pelos prolongamentos dos dois lados e a paralela ao outro lado, passando pelo vértice oposto a ela, são respectivamente opostos pelo vértice e os outros dois são ângulos correspondentes, formados por uma transversal a retas paralelas. Os três ângulos completam exatamente um ângulo raso, ou seja $180^{0}$. Isso irá ocorrer com qualquer triângulo, não importando as medidas de seus ângulos internos. A soma dos mesmos será sempre a mesma. Dará $180^{0}$.

Podemos estabelecer que:

$\alpha \lt(\beta + \gamma)$

$\beta \lt (\alpha + \gamma)$

$\gamma \lt (\beta + \alpha)$

Também podemos estabelecer que cada ângulo é maior do que o módulo da diferença dos outros dois.

$\alpha \gt |\beta – \gamma|$

$\gamma \gt |\alpha – \beta|$

$\beta \gt |\alpha – \gamma|$

Segmentos notáveis num triângulo

Altura: – é o segmento que une um vértice ao lado oposto formando com ele um ângulo reto. Como mostram as várias figuras, esse segmento pode estar localizado no interior do triângulo, como também pode estar fora, como acontece nos ângulos obtusângulos, quando é traçada em relação a um dos lados menores. Nos triângulos retângulos, as alturas em relação aos catetos, são os próprios. As alturas traçadas em relação aos três lados, se interceptam em um ponto, que pode estar localizado fora da figura. Este ponto é o chamado ortocentro do triângulo

Habitualmente a altura é simbolizada pela letra h, o que não é regra, apenas uma sugestão. A intersecção das alturas é denominada de ortocentro do triângulo.

Bissetriz: – denominamos bissetriz a reta ou segmento de reta que divide um ângulo ao meio. Todo triângulo possui três bissetrizes, que se interceptam em um ponto, no interior do polígono. A intersecção das bissetrizes denomina-se incentro, isto é, centro do compasso nesse ponto e abertura até qualquer um dos lados, pode-se traçar uma circunferência inscrita no interior do triângulo. Ela será tangente aos três lados do triângulo.

As bissetrizes inscrevem uma circunferência no interior do triângulo. Esta circunferência toca os três lados do triângulo.

Obs.: O triângulo equilátero e equiângulo, é o único triângulo que pode ser denominado como figura geométrica regular. Por isso dedicaremos especial atenção a alguns detalhes. (Final.)

Medianas de um triângulo: – denominamos medianas as retas ou segmentos de reta que contém um vértice e o ponto médio do lado oposto a esse vértice, em qualquer triângulo. A intersecção das medianas determina o ponto denominado baricentro. Em outras palavras significa que uma lâmina triangular de material e espessura uniforme fica em equilíbrio se suspensa por esse ponto.

A intersecção das medianas determina o centro de massa de uma lâmina em forma de triângulo, sendo feita de material uniforme e espessura constante.

Mediatrizes de um triângulo: – são segmentos de reta levantados perpendicularmente ($90^{0}$) ao ponto médio de cada um dos lados do triângulo. A intersecção desses segmentos determina o ponto denominado circuncentro. Centrando o compasso nesse ponto e com abertura aos vértices, pode-se traçar uma circunferência circunscrita ao triângulo.

As mediatrizes permitem circunscrever uma circunferência ao triângulo, contendo os três vértices.

Triângulos semelhantes

Dois ou mais triângulos são semelhantes se eles tiverem ao menos dois ângulos congruentes. Como a soma dos ângulos internos de qualquer triângulo é sempre igual a $180^{0}$, a congruência entre dois ângulos, implica necessariamente que o terceiro ângulo também seja congruente.

Os triângulos semelhantes têm uma característica importante. A congruência entre seus ângulos faz com que os lados que formam os respectivos ângulos sejam proporcionais.

Aqui temos dois triângulos equiláteros e portanto são semelhantes. Não são congruentes pois seus lados têm medidas diferentes, porém eles são proporcionais.

Observando os lados correspondentes podemos escrever a proporção:

$ {a\over a’} = {b\over b’} = {c\over c’}$

Agora temos dois triângulos retângulos, onde os ângulos congruentes determinam a proporcionalidade entre os lados correspondentes.

${m\over m’} = {n\over n’} = {p\over p’}$

Temos aqui um triângulo retângulo, onde a altura $h$ divide o ${\Delta}{(ABCA)}$ em dois triângulos semelhantes entre si e ao original.

No triângulo retângulo, temos o angulo reto $\widehat{(BAC)}$, e os ângulos agudos $\widehat{(ABC)}$ e $\widehat{(ACB)}$. Ao traçar a altura $h$ passamos a ter dois triângulos retângulos com os ângulos retos adjacentes $\widehat{(AMB)}$ e $\widehat{(AMC)}$. Tanto o $\Delta{(AMBA)}$ quanto o $\Delta{(AMCA)}$ têm um ângulo comum com o $\Delta{(ABCA)}$. Sendo assim ambos são semelhantes ao triângulo maior e consequentemente são semelhantes entre si. Isso nos permite escrever a proporção:

${m\over h} = {h\over n}$$\Leftrightarrow$$ h² = m\cdot n$

Entre estas expressões a que mais usamos em aplicações variadas é a última, que costuma ser enunciada como:

Num triângulo retângulo a altura relativamente à hipotenusa é média proporcional entre as projeções dos catetos sobre ela”.

Como demonstramos acima.

Triângulo áureo

O triângulo áureo básico é aquele que tem por hipotenusa um segmento cuja medida é igual à razão áurea $a = \Phi$. Os catetos são $b = \sqrt{\Phi}$ e $c = 1$. Todos os triângulos semelhantes a esse, quer sejam maiores ou menores são triângulos áureos. Seus lados serão respectivamente proporcionais.

Triângulo áureo fundamental e seus semelhantes

Podemos determinar os ângulos internos de qualquer triângulo áureo.

Por definição o ângulo entre os lados menores é reto. Mede $90^{0}$.

Os ângulos agudos são opostos aos catetos. Vejamos:

$sen^{-1}\gamma = \frac{\sqrt{\Phi}}{\Phi} = \frac{\sqrt{1,618}}{1,618}$

$\color{Navy}{sen^{-1}\gamma\simeq 51,828^{0}}$

$sen^{-1}\alpha = \frac{1}{\Phi} = \frac{1}{1,618}$

$\color{Navy}{sen^{-1}\alpha\simeq 38,172}$

Soma dos lados de um triângulo

Perímetro: – é a soma dos três lados do triângulo.

$p_{\Delta} = a + b + c$

Soma de dois lados: – em qualquer triângulo a soma de dois lados será sempre maior do que o terceiro lado.

$a \lt b + c$

$b \lt a + c$

$c \lt a + b$

Diferença entre dois lados: – o módulo da diferença entre dois lados de um triângulo é sempre menor do que o outro lado.

$|a – b| \lt c$

$|a – c| \lt b$

$|b – c| \lt a$

O triângulo retângulo tem uma característica importante, que veremos no próximo post. É uma figura geométrica de grande importância, com inúmeras situações em que se aplicam os conhecimentos a seu respeito.

Algumas perguntas para pensar?

  1. Um triângulo retângulo pode ser equilátero?

( ) sim; ( ) não; Porquê?…………………………………

2. Um triângulo escaleno pode ser retângulo?

( ) sim; ( ) não; Porquê?………………………………

3. Um triângulo equilátero pode ser obtusângulo?

( ) sim; ( ) não; Porquê? ……………………………………

4. Um triângulo isósceles pode ser retângulo?

( ) sim; ( ) nâo; Porquê? …………………………………

5. Um triângulo isósceles pode ser obtusângulo?

( ) sim; ( ) não; Porquê?…………………………………..

06. Um triangulo equilátero e um obtusângulo podem ser semelhantes? ( ) sim; ( )não; Porquê? ……………………………………………………………………………..

07. Se um triângulo deve ser construído com os lados medindo 3,0 cm, 5,0 m e 10,0 cm, é possível essa construção? ( )sim; ( )não; Porquê? Pense bem antes de responder. ………………………………………………………………………………………………..

08. Se a hipotenusa de um triângulo áureo mede $a = 5,0\,cm$, quais são as medidas de seus catetos?

09. O cateto menor de um triângulo áureo mede $c = 3,2\,cm$. Determine a medida do outro cateto e da hipotenusa.

10. A soma dos catetos de um triângulo áureo mede $b + c = 6,0\,cm$. Determine as medidas dos catetos e também da hipotenusa.

11. Um triângulo tem os lados $a = 8,0\, cm$ e $b= 6,0\,cm$. O terceiro lado mede tem sua medida em qual intervalo?

12. Em um triângulo um dos lados mede $15,0\,cm$. Quais os possíveis valores das medidas dos outros dois lados?

13. Se um dos ângulos de um triângulo mede $75^{0}$, quais são os possíveis valores das medidas dos outros dois ângulos?

14. Se um triângulo retângulo tem um ângulo agudo de $52^{0}$, quantos graus mede o outro ângulo agudo?

15. Se dois ângulos em um triângulo medem respectivamente $48^{0}$ e $62^{0}$, qual é a medida do terceiro ângulo?

16. Um triângulo tem dois lados medindo $a = 25,0\,cm$ e $b = 32,0\,cm$. Pergunta-se qual é o valor máximo que o perímetro desse triângulo pode ter?

Se ficaram dúvidas, faça a gentileza de entrar em contato por meio de um dos canais listados abaixo e vamos esclarecer o que não ficou entendido. OK?

Curitiba, 26 de outubro de 2019

Décio Adams

[email protected]  

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e Whatsapp: (41) 99805-0732

Matemática – Geometria

Figuras geométricas.

Ângulos

A intersecção de duas retas ou o encontro de dois segmentos de reta, formam o que chamamos de ângulo. Vejamos a figura ilustrativa abaixo.

Temos aí vários exemplos de ângulos, todos identificados por três letras, onde a letra do meio está associada ao ponto de encontro dos segmentos ou das retas. Esse ponto é denominado vértice do ângulo. No primeiro caso temos o ângulo $\widehat{ABC}$, depois $\widehat{DEF}$, $\widehat{GHI}$. Na intersecção das retas podemos identificar os ângulos ${\widehat{POQ}}$, ${\widehat{QOS}}$, $\widehat{ROS}$ e $\widehat{POR}$.

Vértice: – é o ponto de encontro dos segmentos ou das retas que formam o ângulo.

Unidades de ângulos:

a) a unidade mais empregada para medir ângulos é o “grau”. Uma circunferência é dividida em $360^{0}$. Isso equivale a dizer que a divisão da circunferência em quatro partes iguais resulta num ângulo reto que mede $90^{0}$.

b) a partir da expressão do comprimento da circunferência, obtemos outra unidade. Estamos falando do radiano e resulta da divisão do comprimento pelo raio. Disso resulta:

$\frac{2\cdot\pi\cdot R}{R} = 2\pi\,rad$

c)existe uma terceira unidade denominada “grado” e uma circunferência é dividida em 400 gr. Essa unidade é pouco empregada.

Equivalências entre as unidades de ângulos.

Vimos que uma circunferência mede:

$360^{0} = 400 gr = 2\pi\, rad$

Ao dividir a circunferência em quatro partes ficamos com:

$90^{0} = 100 gr = \frac{2\pi}{4} = \frac{\pi}{2}\,rad$

Ao dividir a mesma em duas partes (metades), temos:

$180^{0} = 200 gr = \frac{2\pi}{2} = \pi\,rad$

Classificação de ângulos

Os ângulos são classificados em função das suas medidas nas várias unidades.

a) Ângulo agudo: – é a denominação dos ângulos menores que $90^{0}$. ( ${0^{0}\lt\alpha\lt{90^{0}}}$)

b)Ângulo reto:é o ângulo que mede 90^{0} ou o equivalente em radianos ou grados. (${\alpha = 90^{0} = {\pi\over{2} }rad = 100 gr}$)

c)Ângulo obtuso: – é todo ângulo que mede mais do que $90^{0}$. (${90^{0}\lt\alpha\lt 180^{0} = {\pi rad} = 200 gr}$)

d)Ângulo raso: – equivale a meia volta. Seriam duas semi-retas colineares ou segmentos colineares.($\alpha = 180^{0} = {\pi rad} = 200 gr$)

e)Ângulos congruentes ou côngruos: – são ângulos que apresentam a mesma medida (abertura). Podem ser sobrepostos, como se fossem um.

Ângulos em função da posição.

Ângulos adjacentes: – São ângulos que têm um lado comum e o mesmo vértice.

Ângulos opostos pelo vértice: – são ângulos formados por dois pares de segmentos consecutivos ou por duas retas concorrentes. O vértice comum é o ponto de intersecção dos segmentos ou das retas.

Os ângulos $\widehat{ABC}$ e $\widehat{CBD}$ são adjacentes. Seu lado comum é o segmento $\overline{BC}$. Os segmentos $\overline{MQ}$ e $\overline{PN}$, formam dois pares de ângulos. Os ângulos $\widehat{MON}$ e $\widehat{POQ}$, os ângulos $\widehat{MOP}$ e $\widehat{NOQ}$. Da mesma forma as retas que se interceptam em $\hat{X}$, formam os ângulos $\widehat{RXS}$, $\widehat{RXT}$, $\widehat{TXU}$ e $\widehat{UXS}$. O vértice sempre é a letra associada ao ponto comum entre os lados dos ângulos.

Ângulos complementares: – são ângulos que somados completam um ângulo reto, ou seja $90^{0}$.

Ângulos suplementares: – são ângulos que somados totalizam um ângulo raso, isto é, totalizam $180^{0}$.

Ângulos replementares: – são ângulos cuja soma perfaz um ângulo de $270^{0}$. Isso equivale à $\frac{3}{4}$ da circunferência.

Ângulos implementares: – os ângulos que somados completam uma volta, isto é uma circunferência, recebem essa denominação.

Retas paralelas cortadas por uma transversal.

Observamos que estão presentes os ângulos opostos pelo vértice e ângulos adjacentes.

Observando atentamente essa figura, podemos encontrar mais algumas conclusões importantes.

a) Ângulos alternos externos: – são os ângulos externos às retas paralelas e ficam em lados opostos da reta transversal. Assim $\alpha_{1}$ é alterno externo de $\alpha_{4}$; $\gamma_{1}$ é alterno externo de $\gamma_{4}$. Esses ângulos são congruentes entre si.

b)Ângulos alternos internos: – são os ângulos internos às retas paralelas e situados em lados opostos à reta transversal. São alternos externos os ângulos $\alpha_{3}$ e $\alpha_{2}$; $\gamma_{3}$ e $\gamma_{2}$. Também estes são congruentes entre si.

c)Ângulos colaterais externos: – são os ângulos externos às retas paralelas e situados do mesmo lado da reta transversal. Isso nos permite dizer que $\alpha_{1}$ é colateral externo de $\gamma_{4}$ e que $\gamma_{1}$ é colateral externo de $\alpha_{4}$. São ângulos suplementares.

d)Ângulos colaterais internos: – são os ângulos internos às retas paralelas e situados do mesmo lado da reta transversal. Então temos que $\gamma_{3}$ e $\alpha_{2}$, assim como $\alpha_{3}$ e $\gamma_{2}$ são colaterais internos.

Obs.: Facilmente se percebe que os ângulos colaterais, tanto os internos quanto os externos são respectivamente suplementares, isto é, somadas suas medidas resultam 180º.

e)Ângulos correspondentes:são ângulos que se situam do mesmo lado da reta transversal e estão voltados para o mesmo lado. Se deslizássemos uma das paralelas sobre a outra eles iriam coincidir ou se sobrepor. Em outras palavras, eles são congruentes. Sempre serão um interno e o outro externo.

Feixe de paralelas cortadas por transversais.

Aqui podemos também identificar todos os ângulos vistos no item anterior. Agora, porém, daremos um passo em frente. Vamos analisar os segmentos de reta determinados pelas paralelas sobre as transversais. Se as transversais também fossem paralelas, haveria a determinação de segmentos congruentes entre as mesmas paralelas. Como não é esse o caso, iremos constatar que existe uma proporcionalidade entre esses segmentos. Quanto mais o ângulo entre as transversais e as paralelas se aproxima de 90º, menor se torna o segmento determinado. Por isso podemos dizer que para ângulos quaisquer, esses mesmos segmentos são proporcionais. Assim:

$\frac{\overline{AB}}{\overline{BC}} = \frac{\overline{DE}}{\overline{EF}}$

Aplicando as propriedades das proporções podemos mudar a ordem dos segmentos e escrever de outra forma.

$\frac{\overline{AB}}{\overline{DE}} = \frac{\overline{BC}}{\overline{EF}}$

Mantendo o mesmo raciocínio também é válido dizer que:

${{\overline{AB}\over\overline{AC}} = {\overline{DE}\over\overline{EF}}}$

Divisão áurea ou extrema razão.

Se um segmento de reta $\overline{AC}$ for dividido em dois segmentos por um ponto $B$, de modo que se tenha:

$\frac{\overline{AC}}{\overline{AB}} = \frac{\overline{AB}}{\overline{BC}}$

Vejamos a figura:

Segmentos na razão áurea.

Fazendo: $\Phi = \frac{\overline{AC}}{\overline{AB}} = \frac{\overline{AB}}{\overline{BC}}$

$\Phi = \frac{\overline{BC} + \overline{AB}}{\overline{BC}}$

$\Phi = \frac{\overline{BC}}{\overline{BC}} + \frac{\overline{AB}}{\overline{BC}}$

$\Phi = 1 + \frac{\overline{BC}}{\overline{AB}}$$\Leftrightarrow$$\Phi = 1 + \frac{1}{\Phi}$

${\Phi}^{2} = \Phi + 1$$\Leftrightarrow$${\Phi}^{2} – \Phi – 1 = 0$

Resolvendo a equação do segundo grau:

$\Delta = (-1)^{2} – 4\times 1\times {(-1)} = 5$

$\Phi = \frac{-(-1)\pm\sqrt{5}}{2\times 1}$

$\Phi_{1} = \frac{1 + \sqrt{5}}{2}$

$\Phi_{2} = \frac{1 – \sqrt{5}}{2}$

Desprezamos a raiz que terá valor negativo e ficamos com um valor

$\Phi = \frac{1 + \sqrt{5}}{2}$$\Leftrightarrow$$\color{Navy}{\Phi = 1,618033989…}$

Via de regra usamos até a terceira casa decimal: $\color{Maroon}{1,618}$

Este é o valor da razão áurea ou média e extrema razão.

Que tal um pouco de exercícios!

  1. Exprimir um ângulo de $135^{0}$ nas unidades radiano e grado.

Sabemos que ; $180^{0} = \pi\,rad$,

Isso nos permite escrever: $\frac{180^{0}}{135^{0}} = \frac{\pi}{x}$$\Leftrightarrow$$x = \frac{135^{0}}{180^{0}}\cdot\pi$

$x = \frac{3}{4}\cdot\pi\, rad$

Se ${360^{0} = 400 gr}$$\Leftrightarrow$$\frac{360^{0}}{135^{0}} = \frac{400}{x}$

$ x = 400\cdot\frac{135^{0}}{360^{0}}$$\Leftrightarrow$

$x = 150\,gr$

Resposta: $135^{0} = 150\,gr = \frac{3}{4}\cdot\pi\,rad$

2. Determinar o complemento, o suplemento, o replemento e o implemento de um ângulo de ${\pi\over{3}}rad$.

a) complemento

$x + \frac{\pi}{3} = \frac{\pi}{2}$

$x = \frac{\pi}{2} – \frac{\pi}{3}$$\Leftrightarrow$$x = \frac{3\pi – 2\pi}{6}$

$x =\frac{\pi}{6}\,rad$

b) suplemento

$ x + \frac{\pi}{3} = \pi$$\Leftrightarrow$$x = \pi – \frac{\pi}{3}$

$x =\frac{3\cdot\pi -\pi}{3}$$\Leftrightarrow$$x = \frac{2\pi}{3}\,rad$

c) replemento

$x + \frac{\pi}{3} = \frac{3\pi}{2}$

$x = \frac{3\pi}{2} – \frac{\pi}{3}$

mmc(3 e 2) = 6

$x =\frac{3\cdot{3\pi} – 2\cdot\pi}{6}$$\Leftrightarrow$$x = \frac{9\pi – 2\pi}{6} = \frac{7\pi}{6}\,rad$

d)implemento

$x +\frac{\pi}{3} = 2\pi$$\Leftrightarrow$$x = 2\pi – \frac{\pi}{3}$

$x = \frac{3\cdot{2\pi} – \pi}{3}$$\Leftrightarrow$$x = \frac{6\pi – \pi}{3}$ $\Leftrightarrow$$x = \frac{5\pi}{3}\,rad$

3. Um ângulo $\alpha = \frac{\pi}{4}\,rad$, é formado por duas retas concorrentes no ponto ${P}$. Pede-se determinar a medida do seu ângulo oposto pelo vértice e as medidas dos dois ângulos adjacentes formados pelas mesmas retas.

O ângulo oposto pelo vértice, como vimos, é congruente ao ângulo dado. Portanto: $\alpha_{1} = \frac{\pi}{4}\,rad$.

Os ângulos adjacentes são os suplementos do ângulo dado e são congruentes entre si, pois também são opostos pelo vértice por sua vez. Então:

$\beta + \frac{\pi}{4} = \pi $$\Leftrightarrow$$\beta = \pi – \frac{\pi}{4}$

$\beta = \frac{4\pi – \pi}{4}$$\Leftrightarrow$$\beta = \frac{3\pi}{4}\,rad$

Os dois ângulos adjacentes são congruentes e portanto têm a mesma medida.

4. Um feixe de três retas paralelas (r//s//p), é cortado por duas retas transversais $t_{1}$ e $t_{2}$, determinando sobre $t_{1}$, os segmentos $\overline{AB} = 5,0\,cm$ e $\overline{AC} =12,0\,cm$. Na reta $t_{2}$ fica determinado o segmento $\overline{DF} = 15,0 \,cm$. Pede-se determinar os segmentos $\overline{BC}$, $\overline{DE}$ e $\overline{EF}$.

Pela lógica do exercício, pode-se escrever:

$\overline{AB} + \overline{BC} = \overline{AC}$

$\overline{BC} = \overline{AC} – \overline{AB}$

$\overline{BC} = \overline{AC} – \overline{AB}$

A proporção fica:

$\frac{\overline{AB}}{\overline{AC}} = \frac{\overline{DE}}{\overline{DF}}$

$\frac{5,0}{12,0} = \frac{\overline{DE}}{15,0}$

$\frac{{5,0}\cdot{15,0}}{12,0} = \overline{DE}$

$\overline{DE} = 6,25\,cm$

Para o segmento $\overline{EF}$

$\overline{DE} + \overline{EF} = \overline{DF}$

$\overline{EF} = \overline{DF} – \overline{DE}$

$\overline{EF} = 15,0 – 6,25 = 8,75\,cm$

5. Determine o segmento que divide o segmento $\overline{AC} = 10\,cm$ em dois segmentos segundo a divisão áurea.

$\Phi = \frac{\overline{AC}}{\overline{AB}}$

$\overline{AB} =\frac{\overline{AC}}{\Phi}$$\Leftrightarrow$$\overline{AB} = \frac{10}{1,618}$

$\overline{AB}\simeq 6,180\,cm$

$\overline{BC} = \overline{AC} – \overline{AB}$$\Leftrightarrow$$\overline{BC} = 10 – 6,180$

$\overline{BC}\simeq 3,82\,cm$

6. Determine a medida dos segmentos que formam os segmentos que estão entre si na razão áurea, maiores que $c = 7,0\,cm$.

$\Phi = \frac{b}{c}$$\Leftrightarrow$$1,618 = \frac{b}{7,0}$

$b = \Phi\times 7$$\Leftrightarrow$$b = 1,618\times 7,0$

$\color{Sepia}{b = 11,326\,cm}$

$\Phi = \frac{a}{11,326}$$\Leftrightarrow$$a = 1,618\times 11,326$

$\color{Sepia}{a = 18,326\,cm}$

Agora é a sua vez.

  1. Determine os suplementos dos ângulos ${\alpha = 30^{0}}$, ${\beta = 75^{0}}$, ${\theta = 120^{0}}$. Exprima os valores também em radianos.
  2. Determine os replementos dos ângulos ${\epsilon ={ 2\pi\over{3}}}$, ${\gamma = {3\pi\over{4}}}$, ${\omega = {\pi\over{6}}}$. Exprima os resultados também em graus.
  3. Determine o implemento dos ângulos ${\alpha = 150^{0}}$, ${\gamma = 225^{0}}$ e ${\beta = 45^{0}}$. dê os resultados também em radianos e grados.
  4. Dois ângulos adjacentes formam juntos um ângulo raso. Se a medida de um deles é igual a $\frac{1}{3}$ desse ângulo, quanto mede o outro? Exprima os valores em graus, grados e radianos.
  5. Uma reta transversal intercepta duas paralelas, formando um ângulo obtuso de ${135^{0}}$. Quanto mede o ângulo colateral agudo desse ângulo? Exprima os resultados nas outras unidades.
  6. Duas retas transversais interceptam um feixe de paralelas, determinando sobre a primeira transversal os segmentos ${\overline{MN} = 7,0cm}$, ${\overline{NO} = 9,0 cm}$ e na outra transversal o segmento ${\overline{PQ} = 6,0 cm}$. Determine os segmentos ${\overline{MO}}$, ${\overline{PR}}$ e ${\overline{QR}}$.
  7. Um segmento de $15\,cm$ é dividido em dois segmentos que formam com ele uma razão áurea. Determine as medidas desses segmentos.
  8. Em um conjunto de três segmentos em uma razão áurea o segmento de medida entre o maior e o menor tem $b = 8,0\,cm$. Determine as medidas dos outros dois segmentos.

Havendo dificuldades faça contato comigo para esclarecimentos. Os canais são estes relacionados abaixo.

Curitiba, 24 de outubro de 2019

Décio Adams

[email protected]  

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732

Matemática – Geometria

Introdução.

O desenvolvimento dos conceitos geométricos foram ocorrendo ao longo da história, especialmente para suprir as necessidades construtivas, demarcações de áreas e outras atividades humanas em sua evolução.

Há evidências do uso de algumas formas geométricas desde a mais remota antiguidade, grandemente nas inscrições denominadas rupestres, nas grutas e cavernas. Eram lugares primitivamente usados para abrigar os seres humanos das intempéries e outros riscos que enfrentavam.

De época mais recente, uma boa parcela de formas geométricas e mesmo alguns cálculos rudimentares, surgiram entre os egípcios para construção de seus sistemas de irrigação agrícola, bem como a demarcação periódica dos lotes destinados ao plantio, após as enchentes benfazejas do Rio Nilo. Foi um filósofo/matemático grego, de nome Euclides, que colocou ordem no caos que era a geometria egípcia. Daí a denominação de Geometria Euclidiana, dada à parte da Geometria que estuda as figuras planas em geral. Ao longo dos séculos foram surgindo novas contribuições de várias origens, até chegarmos aos dias atuais. A Geometria é de grande valia na vida humana, especialmente no desenvolvimento de máquinas e equipamentos, edificações diversas, onde as formas derivam desses conhecimentos.

Conceitos primitivos ou que não se podem definir.

Há alguns conceitos primitivos que podemos apenas descrever, mas não definir ou materializar. Todos os demais conceitos derivam deles, uma vez que os usamos para definir os outros, mais complexos, mais elaborados.

Ponto – Se pegarmos um lápis, muito bem afinado e com ele tocarmos uma folha de papel ou outra superfície, a marca deixada nos dará a ideia de um ponto. Dizemos que nos dá a ideia de ponto, uma vez que este é infinitamente menor, o que equivale a dizer que o ponto não tem dimensão. Os pontos são identificados por meio de letras maiúsculas como A, B, C, D, ou P, Q, R, S e outras.

As marcas feitas na imagem acima, podem servir de uma localização de pontos, mas na realidade não são pontos, são conjuntos de pontos. São pequenas manchas.

Reta – se colocarmos justapostos um número infinito de pontos, sempre na mesma direção, teremos a representação de uma reta. Ela é infinita em ambos os sentidos. Sendo formada por pontos, ela não tem espessura. Um risco com o lápis ou caneta, nos dá uma representação da reta, mas apenas isso. Geralmente usamos uma letra minúscula para identificar uma reta. É comum usar para isso as letras como r, s, t, p, q ou qualquer uma das outras, dependendo das circunstâncias.

Por um ponto passam infinitas retas. Por dois pontos em um plano, é possível traçar uma e somente uma reta.

As infinitas retas que podemos traçar pelo ponto, abrangem todo espaço tridimensional.
Pelos pontos ${A}$ e ${B}$, podemos traçar somente a reta ${\overleftrightarrow{AB}}$, assim como pelos pontos ${C}$ e ${D}$, é possível traçar somente a reta ${\overleftrightarrow{CD}}$

Semi-retas: – um ponto sobre uma reta, divide a mesma em duas semi-retas, que têm como origem esse ponto e se prolongam até o infinito na mesma direções e em sentidos opostos. Uma semi-reta é representada pelo ponto de origem e outro ponto identificado, encimados por uma seta partindo da letra origem para a outra letra. Por exemplo ${\overrightarrow{PP’}}$ ou ${\overrightarrow{PP”}}$

Segmentos de reta: – denominamos segmento de reta a parte de uma reta compreendida entre dois pontos identificados sobre ela. Os segmentos de reta são identificados pelas letras associadas as extremidades, encimadas por um traço horizontal. Exemplo ${\overline{PQ}}$

Segmentos consecutivos: – segmentos consecutivos têm uma extremidade comum e fazem parte da mesma reta. Por fazerem parte da mesma reta também são denominados segmentos colineares. Na figura os segmentos ${\overline{PQ} ;\overline{QR}}$

Na primeira reta temos as semi-retas ${\overrightarrow{PP’} e \overrightarrow{PP”}}$. Na segunda reta podemos identificar o segmento de reta ${\overline{PQ}}$ e na terceira reta temos os segmentos consecutivos ${\overline{PQ} e \overline{QR}}$.

Plano: – se olharmos para uma folha de papel sobre uma mesa ou colocada na vertical, podemos imaginar o que é um plano se imaginarmos essa folha se estendendo infinitamente em todas as direções e sentidos imagináveis. O plano é infinito, mas não tem espessura. Um plano geralmente é identificado por uma letra grega, como ${\alpha}$; ${\beta}$; ${\gamma}$.

O plano se estende infinitamente em todas as direções imagináveis prolongando a folha ou a tela do computador.

Classificação de retas

Retas coplanares: – são retas que estão contidas no mesmo plano. Vejamos a figura a seguir.

As retas coplanares podem ser paralelas, convergentes ou ortogonais.

Retas de topo: – são retas que perfuram um ou mais planos em qualquer direção, como mostra a figura.

Dois planos ortogonais, são perfurados por retas em diferentes pontos e estas retas são denominadas retas de topo.

Retas paralelas: – são retas pertencentes a um mesmo plano e todos os seus pontos sucessivos são equidistantes. Em outras palavras elas se prolongam até o infinito, sem jamais se encontrarem, isto é, não têm nenhum ponto comum.

As retas r, s, t, u tem todos seus pontos pertencentes ao plano ${\alpha}$ e no entanto não têm nenhum ponto em comum entre elas.

Retas concorrentes: – são retas que podem pertencer a um mesmo plano e têm um ponto comum. Por um mesmo ponto podemos traçar infinitas retas.

As retas p, q e r pertencem ao mesmo plano ${\alpha}$. As retas p e q, concorrem no ponto C. As retas q e r concorrem no ponto B e as retas p e r convergem ou concorrem no ponto A. Cada uma dessas retas é concorrente de inúmeras retas que passam no mesmo ponto e em pontos diferentes.

Retas ortogonais: – são retas que formam entre elas um ângulo de 90º ou seja um ângulo reto. Elas determinam um plano, como é o caso $\beta$.

As retas x e y são concorrentes no ponto O e formam um ângulo reto, isto é, os quatro ângulos formados pelas semi-retas são todos iguais a 90º.

Retas oblíquas: – são retas coplanares que formam ângulos diferentes de 90º. Dois são iguais e menores que 90º e outros dois são iguais e maiores que 90º.

As retas r e s são concorrentes no ponto P e formam dois ângulos ${\theta \lt {90º}}$ e dois ângulos ${\alpha\gt{90º}}$.

Planos paralelos: – são planos cujos pontos determinados por retas ortogonais a eles e paralelas entre si, são sempre equidistantes. Veja ilustração da figura.

Duas retas paralelas perfuram os planos ${\alpha}$ e ${\beta}$, determinando dois segmentos congruentes (mesma medida) que são ${\overline{MN}}|$ e ${\overline{PQ}}$. Isso demonstra que os planos ${\alpha}$ e ${\beta}$ são paralelos.

Planos ortogonais: – são planos que se interceptam segundo uma linha reta e qualquer reta ortogonal a um deles, será obrigatoriamente paralela ao outro plano.

As retas r e s perfuram os planos $\alpha$ e $\beta$ num ângulo que mede $90º$ e são paralelas respectivamente aos dois planos ortogonais. Fica fácil observar que as mesmas retas são também ortogonais entre si.

Planos oblíquos:são planos que se interceptam segundo uma linha reta, mas formam entre si ângulos $\neq{90º} $. Dois ângulos $\lt{90º}$ e dois angulos $\gt{90º}$.

Os planos oblíquos $\gamma$ e $\beta$ formam dois ângulos $\theta\lt{90º}$ e dois ângulos ${{180º – \theta}\gt{90º}}$.

Já vimos que existem linhas retas, que é o caso mais simples de linha. Agora vejamos os outros tipos de linhas possíveis.

Linhas curvas: são formadas por um conjunto infinito de pontos, que não estão arrumados na mesma direção. A direção varia em cada ponto da linha.

Linha mista:linha formada por porções curvas e porções retas, que podem se alternar.

Linha quebrada: – sequência de trechos retos e direções variadas.

Com estas informações teremos condições de desenvolver os próximos tópicos, que iniciaremos no post que virá em seguida.

Havendo dúvidas, não hesite em contactar-me por um dos canais abaixo listados, para esclarecimentos.

Curitiba, 23 de outubro de 2019

Décio Adams

[email protected]  

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhattsApp: (41) 99805-0732

Matemática – Aritmética – Algarismos significativos.

Algarismos podem perder o significado?

Tenho quase certeza de que, ao ler esse título, muitas pessoas ficarão perplexas, talvez chocadas. Como pode um algarismo perder o significado? O significado não é sempre o mesmo?

É importante não confundir o significado com o valor. O valor representado pelo algarismo depende dele mesmo e da posição que ocupa dentro do número. O significado depende da possibilidade de podermos medir o valor que ele representa.

Quando se aprende a usar as unidades empregadas na medição das grandezas com que iremos lidar no dia a dia, vemos que ela tem múltiplos submúltiplosEstes servem para exprimir medidas com frações da unidade e também com grande número delas. É por aí que começa a questão dos algarismos significativos.  

Continue lendo “Matemática – Aritmética – Algarismos significativos.”

Matemática – Aritmética – Divisão parte II

Divisão.

  • Vamos continuar aprendendo mais um pouco.
  • Vou tentar apresentar alguns exemplos onde apareçam as dificuldades que podem atrapalhar e explicar como se procede para contornar.
  • Vejamos o caso:
  • $$\color{NavyBlue}{1516\div 76 = ?}$$

Temos que dividir os três primeiros algarismos do dividendo, para ser possível. Observe que ${15\div 7 = 2}$. Isso nos daria o primeiro algarismo do quociente igual a 2. Mas, ao multiplicar ${2\times 76 = 152}$, vemos que não é possível subtrair esse valor de ${151}$. Assim, temos que reduzir o primeiro algarismo do quociente para 1. Isso acontece com frequência. É preciso ter cuidado para não se perder nesse momento.

Colocando ${1}$ no quociente e fazendo a multiplicação, subtraímos de ${151-76 = 75}$. O resto é ${75}$. Note que faltou pouco para o quociente ser ${2}$. Baixamos o ${6}$ para a direita do resto e temos o número ${756}$. Importante notar que nunca se colocam dois algarismos de uma vez no quociente. Por isso o máximo que pode aparecer é ${9}$, nunca mais. A multiplicação ${9\times 76 = 684}$, subtraímos  ${756-684=72}$. Temos portanto o resultado da divisão: $\color{NavyBlue}{1516\div 76 = 19}$, $\color{NavyBlue}{resto = 72}$ $\Leftrightarrow $ $\color{NavyBlue}{19\times 76 + \color{Red}{72} = 1516}$

$\color{NavyBlue}{5356\div 52 = ?}$

O primeiro algarismo do quociente será ${1}$ (um) e teremos resto ${1}$. Ao baixarmos o próximo algarismo, forma-se o número ${15\lt 52}$ e neste caso escrevemos, como próximo algarismo do quociente um ${0}$ (zero), antes de baixar o outro algarismo, formando agora o número ${156}$. A divisão de ${15\div5 = 3}$ o que deve permitir divisão por ${3}$ (três). Multiplicando ${3\times 52 = 156}$, que subtraído do dividendo, deixará resto${0}$ (zero). Resulta que $\color{NavyBlue}{5356\div 52 = 103}$, $\color{NavyBlue}{resto = 0}$ $\Leftrightarrow$ $\color{NavyBlue}{103\times 52 = 5356}$.

  • $\color{NavyBlue}{4009\div 64 = ?}$

Os dois primeiros algarismos do dividendo formam um número menor que o divisor ${40\lt 64}$. Então temos que começar dividindo o número com três algarismos ${400\gt 64}$. Dividindo ${40\div 6 = 6}$, resto ${4}$. Devemos ter como primeiro algarismo do quociente o ${6}$ (seis). ${6\times 64 =384\lt 400}$. Subtraindo ${400 – 384 =16}$. Escrevemos ao lado direito do resto o último algarismo do dividendo, formamos ${169}$. A divisão ${16\div 6 = 2}$ com resto ${4}$. O próximo algarismo do quociente será ${2}$. ${2\times 64 = 128}$, que subtraído ${169 – 128 = 41}$. O quociente da divisão será pois ${62}$ e o resto ${41}$. Podemos escrever: $\color{NavyBlue}{4009\div 64 = 62}$, $\color{NavyBlue}{resto = 41}$, $\Leftrightarrow$ $\color{NavyBlue}{62\times 64 +\color{red}{41} = 4009}$

  • $\color{navy}{2401\div 49 = ?}$
  • O número para começar a divisão, deve ter três algarismos, pois ${24\lt 49}$. Então ${24\div 4 = 6}$. Fazendo ${6\times 49 = 294\gt 240}$ o que não permite a divisão. Diminuímos para ${5\times 49 = 245\gt 240}$, também não permite a divisão. Devemos começar com o algarismo ${4}$ no quociente. Multiplicando ${4\times 49 = 196}$. Subtraindo ${240 – 196 = 44}$.
  • Escrevemos à direita do resto o último algarismo do dividendo ficamos com ${441}$. Dividindo ${44\div 4 = 11\gt 9}$. Portanto o próximo algarismo pode ser no máximo ${9}$. Multiplicamos ${9\times 49 = 441}$. Subtraímos ${441 – 441 = 0}$. Então:
  • $\color{NavyBlue}{2401\div 49 = 49}$,$\color{NavyBlue}{resto = 0}$ $\Leftrightarrow$ $\color{NavyBlue}{49\times 49 = 2401}$.
  • $\color{NavyBlue}{2581\div 89 =?}$

A divisão começa pelo número ${258}$, onde temos ${25\div 8 = 3}$, restando ${1}$. Multiplicando ${3\times 89 = 267\gt 258}$. Temos que diminuir uma unidade. Agora ${2\times 89 = 178}$, que diminuído ${258 – 178 = 80}$. Escrevendo o algarismo final ${1}$ à direita do resto fica ${801}$. Para saber o valor do próximo algarismo do quociente, vejamos quanto dá ${80\div 8 = 10\gt 9}$, por isso devemos usar no máximo ${9}$. Multiplicamos ${9\times 89 = 801}$. Diminuímos ${801 – 801 = 0}$. $\color{NavyBlue}{2581\div 89 = 29}$, $\color{NavyBlue}{resto = 0}$, $\Leftrightarrow$ $\color{NavyBlue}{29\times 89 = 2581}$.

Exercícios, lá vamos nós!

Efetue as divisões a seguir, usando para isso a forma de escrever os termos dentro da chave e realizando as operações, passo a passo. 

  • $\color{OliveGreen}{3792\div 65 =?}$
  • $\color{OliveGreen}{7921\div 89  = ?}$
  • $\color{OliveGree}{4036\div 53  = ?}$
  • $\color{OliveGreen}{5123\div 47 =?}$
  • $\color{OliveGreen}{3584\div 37 = ?}$
  • $\color{OliveGreen}{10548\div 96 =?}$
  • $\color{OliveGreen}{3230\div 65 = ?}$
  • $\color{OliveGreen}{3792\div 72 = ?}$
  • $\color{OliveGreen}{9486\div 75 =?}$
  • $\color{OliveGreen}{5392\div 82 =?}$

Obs.: Em caso de qualquer dúvida, faça contato com um dos meios abaixo para tirar suas dúvidas. Mande outro tipo de dúvida que tentarei ajudar se for possível. 

Confira as respostas que obteve para os exercícios acima. 

  • $\color{OliveGreen}{3792\div 65 = 58 \Rightarrow (58\cdot 65) + 22}$
  • $\color{OliveGreen}{7921\div 89 = 89\Rightarrow(89\cdot 89) = {(89)}^2}$
  • $\color{OliveGreen}{4036\div 53  = 76\Rightarrow (76\cdot 53) + 8}$
  • $\color{OliveGreen}{5123\div 47 =109\Rightarrow (109\cdot 47)}$
  • $\color{OliveGreen}{3584\div 37 = 96 \Rightarrow(96\cdot 37) + 32}$
  • $\color{OliveGreen}{10548\div 96 = 109 \Rightarrow (109\cdot 96) + 84}$
  • $\color{OliveGreen}{3230\div 65 = 49 \Rightarrow (49\cdot 65) +45}$
  • $\color{OliveGreen}{3792\div 72 = 52 \Rightarrow(52\cdot 72) + 48}$
  • $\color{OliveGreen}{9486\div 75 =126 \Rightarrow(126\cdot 75) + 36}$
  • $\color{OliveGreen}{5392\div 82 =65 \Rightarrow (65\cdot 82) + 62}$

Curitiba, 14 de julho de 2016. Revisado e atualizado em 12 de outubro de 2019.

Décio Adams

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular: (41) 99805-0732

Matemática – Aritmética – Divisão

Divisão

  • Divisão. Do mesmo modo que a subtração é a operação inversa da adição, a divisão é a inversa da multiplicação.

Vamos tomar um exemplo.

  • A mãe volta do trabalho e passa pelo mercado. Compra os mantimentos necessários para fazer a janta e café da manhã. Para agradar seus três filhos, passa na seção de balas e doces, pegando um pacote de bombons, com 15 unidades.

Continue lendo “Matemática – Aritmética – Divisão”