01.060 – Matemática, Álgebra. Sistemas de equações com duas incógnitas. Exercícios.

Resolvendo os exercícios.

  1. Determine o conjunto verdade dos sistemas de equações a seguir.

a) $$ 3x – 2y = 10 $$ $$ x + y = 13 $$ O caminho mais fácil é exprimir o valor de uma das incógnitas em função da outra, partindo da segunda equação. $$ x + y = 13$$ $$ x – x + y = 13 – x $$ $$ y = 13 – x $$ Substituindo da outra equação, teremos: $$ 3x – 2\cdot{(13 – x)} = 10 $$ $$ 3x -26 + 2x = 10 $$ $$ (3x + 2x) – 26 + 26 = 10 + 26 $$ $$ 5x = 36 $$ $$ {{5x}\over 5} = {{36}\over 5} $$ $$ x = 7,2$$ Substituindo na outra expressão: $$ y = 13 – 7,2 $$ $$ x = 5,8 $$  $$ V = \{(5,8; 7,2)\} $$

Continue lendo “01.060 – Matemática, Álgebra. Sistemas de equações com duas incógnitas. Exercícios.”

01.059 – Matemática, Álgebra. Sistemas de equações com duas incógnitas.

Sistemas com duas incógnitas

Até o último post falando de equações, vimos somente situações em que aparece apenas uma incógnita. E se nos depararmos com um problema em que haja duas incógnitas, como iremos proceder?

Com as ferramentas, ou seja, métodos de resolução vistos até agora, fica complicado. No entanto existem modos de chegarmos a uma resposta satisfatória. Depende das informações que tivermos a respeito dessas incógnitas. Geralmente é necessário saber de duas relações entre essas elas. Isso nos permitirá escrever duas equações envolvendo essas incógnitas e assim formaremos um sistema de duas equações. De posse dessas duas equações, aplicando o raciocínio adequado, poderemos determinar o valor das incógnitas. Nesse raciocínio iremos utilizar as propriedades que estudamos anteriormente para as operações, as expressões algébricas, enfim tudo que vimos até o momento.

Continue lendo “01.059 – Matemática, Álgebra. Sistemas de equações com duas incógnitas.”

01.058 – Matemática – Álgebra, Equação bi-quadrada.

Equação bi-quadrada?

Achou engraçado o nome?! Pois é, apesar do nome é um tipo de equação do 4º Grau, porém incompleta. Vejamos. Uma equação do 4º Grau, completa fica assim em sua forma geral.

$\bbox[silver,5px,border:2px solid aqua]{ ax^4 + bx^3 + cx^2 +dx + e = 0}$

Grande, não é?! Essas equações são resolvidas por um método diferente e apenas para adiantar, elas podem ter até quatro raízes reais. Mas ainda não é o momento de estudarmos coisas desse nível.

Então o que é essa tal de equação bi-quadrada? Eu disse no começo que ela é uma equação incompleta do 4º Grau. Sua forma geral pode ser apresentada assim:

$\bbox[silver,5px,border:2px solid aqua]{ax^4 + bx^2 + c = 0} $

Ela não tem os termos onde a variável x aparece com expoente ímpar

$\bbox[silver,5px,border:2px solid aqua]{(x^3 ; x)}$

Continue lendo “01.058 – Matemática – Álgebra, Equação bi-quadrada.”

01.057 – Matemática, Álgebra. Equações incompletas do 2ºGrau, exercícios resolvidos.

Resolvendo exercícios

Determine o conjunto verdade das equações incompletas do segundo grau que seguem.

a) $ 6x² = 0 $

Um produto é nulo se um dos fatores é nulo. No caso, temos dois fatores onde um é igual a seis (6) e o outro $ x^2$. O único fator que pode ser nulo é o segundo e portanto:

$ x^2 = 0 $

$ x = 0 $

$ V = \{0\} $

b) $ x² – 16 = 0 $

Podemos aplicar o método abreviado ou reduzido na resolução dessa equação. Assim:

$ x^2 – 16 = 0 $

${x^2 – 16 +16 = 0 + 16}$

$ x^2 = 16 $

$\sqrt[2]{x^2} = \sqrt[2]{16} $

$ x = \pm {4 } $

$ V = \{ – 4, + 4\} $

c) $ 5x² – 125 = 0 $

O mesmo caso do exercício anterior.

$ 5x^2 – 125 = 0 $

$ 5x^2 – 125 + 125 = 0 + 125 $

$ 5x^2 = 125 $

$ {{5x^2}\over 5} = {125\over {5}} $

$ x^2 = 25 $

$\sqrt[2]{x^2} = \sqrt[2]{25} $

$x = \pm 5 $

$ V = \{ -5, + 5\} $

d) $ 2x² + 10x = 0$

Esta é uma equação incompleta do tipo em que o termo independente c é nulo. O procedimento agora é diferente, como vimos na parte explicativa.

$ 2x^2 + 10x = 0 $

Entre os dois termos da equação existe um fator comum

$ 2x $

Vamos colocar em evidência esse fator comum, dividindo os dois membros por esse mesmo fator.

$ {2x} [{{2x^2 + 10x)}\over 2x}] = 0 $

$ 2x{(x + 5)} = 0 $

Para concluir, vamos igualar os dois fatores a zero e obter as duas raízes correspondentes.

$ 2x = 0 $

${2x\over 2} = {0\over 2}$

$ x = 0$

$ x + 5 = 0 $

$ x + 5 – 5 = 0 – 5 $

$ x = -5 $

$ V = \{-5, 0\} $

e) $ 7x² – 49x = 0$

O mesmo caso anterior. O fator comum entre os dois termos da equação é

$ 7x $

Colocando em evidência:

${7x}\cdot[{{7x^2 – 49x}\over 7x}] = 0 $

$ 7x[ x – 7] = 0 $

Igualando os dois fatores a zero temos:

$ 7x = 0 $

${7x\over 7} = {0\over 7}$

$ x = 0$

$ x – 7 = 0 $

$ x – 7 + 7 = 0 + 7 $

$ x = 7 $

$ V = \{0, 7\} $

f) $ x² + 4x = 0 $

Fator comum entre os dois termos $ x $. Colocando em evidência:

$ x\cdot[{{x^2 + 4x}\over x}] = 0 $

$ x\cdot [x + 4] = 0 $

Igualando os fatores à zero, teremos:

$ x = 0$

$ x + 4 = 0 $

$ x + 4 – 4 = 0 – 4$

$ x = -4$

$ V = \{-4, 0\} $

g) $ 3x² + 18x = 0$

Mais um do mesmo tipo. Fator comum é $ 3x $ Colocamos em evidência:

${3x}\cdot({{3x^2 + 18x}\over {3x}}) = 0 $

$ 3x\cdot({x + 6}) = 0 $

$ 3x = 0 $

$ x = 0 $

$ x + 6 = 0 $

$ x + 6 – 6 = 0 – 6$

$ x = -6 $

$V = \{-6, 0\} $

h) $ 2x² + 12 = 0$

Voltamos ao exemplo visto primeiro. Vamos resolver.

$2x^2 + 12 – 12 = 0 -12 $

$2x^2 = -12 $

${{2x^2}\over 2} = {-12\over 2} $

$ x^2 = -6 $

${ \sqrt[2]{x^2}} = {\sqrt[2]{-6}} $

$ {V = \emptyset} $

i) $ 10 x² – 90 = 0 $

Vamos resolver.

${ 10 x^2 – 90 + 90 = 0 + 90 }$

$ {10x^2 = 90 }$

$ {{10x^2}\over 10} = {{90}\over 10} $

${ x^2 = 9 }$

${\sqrt[2]{x^2} = \sqrt[2]{9} }$

$ x = \pm 3 $

$ V = \{-3, +3\} $

j) $ {3x^2 = 0 }$

Outro exemplo da equação que só tem o termo em $x^2$. Um produto só pode ser nulo se um dos fatores for nulo. Nesse caso, o fator que pode ser nulo é $x^2$. Portanto:

$ x^2 = 0 $

$\sqrt[2]{x^2} = \sqrt[2]{0}$

$ x = 0 $

$V = \{0\}$

l) ${10x^2 – 15x = 0}$

Estamos novamente com uma equação incompleta, onde falta o termo independente da variável, isto é, onde $x^0$. Temos um fator comum entre os dois termos restantes que é $5x$. Colocamos em evidência o fator comum, ficando:

${5x}\cdot[{{10x^2 – 15x}\over{5x}}] = 0 $

${5x[2x – 3] = 0} $

Igualando os dois fatores a zero, temos:

${5x = 0}$

$ x = 0$

${2x – 3 = 0}$

${2x = 3}$

${{2x}\over{2}} = {{3}\over {2}}$

${ x = 3/2 }$

$ V = \{0, 3/2\}$

m) ${7x^2 – 28 = 0}$

Nesta equação o termo inexistente é o que contem a variável $x^1$. Vamos pelo método abreviado:

${7x^2 – 28 = 0}$

$ {{7x^2 – 28}\over 7} = 0$

$ x^2 – 4 = 0$

${ x^2 =  4}$

${\sqrt[2]{x^2} = \sqrt[2]{4}}$

${ x = \pm{2}}$

$ { V = \{- 2, +2\}}$

n) ${3x^2 – 27 = 0 }$

O mesmo caso do anterior.

${3x^2 – 27} = 0$

${{3x^2 – 27}\over 3} = 0$

${x^2 – 9 = 0}$

${x^2 = 9}$

${\sqrt[2]{x^2} = \sqrt[2]{9}}$

${ x = \pm 3}$

$ V = \{-3, +3\} $

o) $ {5x^2 + 25 = 0}$

Vamos ver como fica esse.

${5x^2  + 25 = 0}$

${{5x^2 + 25}\over 5} = 0$

$ {x^2 + 5 = 0} $

$ x^5 = -5 $

$ \sqrt[2]{x^2} = \sqrt[2]{-5} $

$ \sqrt[2]{-5} ∉ R $

Por isso

${V = \emptyset }$

Curitiba, 13 de maio de 2016.

Republicado em 27 de dezembro de 2017.

Décio Adams

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celulares: (41) 99805-0732

01.056 – Matemática, Álgebra, Equações 2º Grau, usando discriminante.

Exercitando do discriminante.

Determine o conjunto verdade das equações do segundo grau, determinando primeiramente o discriminante para verificar o tipo de raízes, para depois obter seus valores.

01).$\color{Indigo}{ x² – 5x + 6 = 0} $

Para começar, iremos identificar os coeficientes da equação.

$ {a = 1} $

${ b = -5 }$

$ {c= 6}$

Calculando o discriminante:

$ \Delta = {b² – 4ac} $

$ \Delta = {(-5)² – 4\cdot 1\cdot 6} $

$ \Delta = 25 – 24 $

$ \Delta = 1$

$ \Delta \gt 0 $

Isto significa que a equação tem duas raízes reais e diferentes entre si.  Podemos agora substituir na fórmula e calcular o restante.

$ x= {{-(-5)\pm\sqrt{\Delta}}\over 2\cdot 1} $

$ ={{5 \pm\sqrt{1}}\over 2} $

$ x= {{5 \pm 1}\over 2} $

As raízes serão:

$ x’= {{5 + 1}\over 2} = {{6}\over 2} =3 $

$ x”= {{ 5 – 1 }\over 2} = {{4}\over 2} = 2 $

O conjunto verdade é:

$$\color{Purple}{V = {\{2, 3\}}}$$

02). $\color{Indigo} {x² +3x -28 = 0} $

Os coeficientes da equação:

$ {a = 1}$

$ {b=3 }$

${ c = -28}$

Vamos calcular o discriminante:

$\Delta = b² – 4ac $

$\Delta = {3² – 4\cdot 1\cdot{(-28)}} $

$\Delta = {9 + 112} = 121$

$\Delta\gt 0 $

Também esta equação tem duas raízes reais e diferentes, pois o discriminante tem valor positivo. 

Vamos aplicar a fórmula:

$ x = {{-b\pm\sqrt{\Delta}}\over 2}$

$ x= {{- 3\pm\sqrt{121}}\over 2\cdot 1} $

$ x = {{-3 \pm 11}\over 2} $

As raízes da equação serão respectivamente:

$x’ = {{-3 + 11}\over 2} = {{8}\over 2} = 4 $

$ x” = {{-3 – 11}\over 2} = {{-14}\over 2} = -7 $

$$\color{Purple}{V= {\{-7, 4\}}}$$

03). $\color{Indigo}{ x² -6x + 9 = 0 }$$

Os coeficientes da equação são:

${a = 1} $ ${ b = -6}$ ${c = 9}$

Hora do discriminante:

$\Delta = b² – 4ac $

$\Delta= {(-6)² – 4\cdot 1\cdot 9} = {36 – 36} = 0$

$\Delta = 0$ 

Temos diante de nós uma equação do segundo grau com duas raízes reais e iguais. 

Aplicando a fórmula:

$ x = {{- b \pm\sqrt{\Delta}}\over 2a} $

$ x = {{-(-6)\pm\sqrt{0}}\over 2\cdot 1}$

As raízes serão:

$ x’ = x” = {{6}\over 2} = 3 $

$$\color{Purple}{V = {\{3\}}}$$

04). $\color{Indigo}{x² – 5x + 7 = 0}$

Coeficientes:

${a=1}$ ${b= -5}$

${c=7}$

Calculando o discriminante:

$\Delta = {b² – 4ac} $

$ \Delta = {(-5)² – 4\cdot 1\cdot 7} = 25 – 28 = -3$

$\Delta \lt 0$

Equação sem solução no conjunto dos números reais, pois o discriminante é negativo. 

$$\color{Purple}{V= {\emptyset}}$$

05). $\color{Indigo}{ x² + 7x + 15 = 0 }$

Coeficientes ${a = 1}$

${b = 7}$

${ c=15 }$

O discriminante fica:

$\Delta = {b² – 4ac} $

$\Delta = {7² – 4\cdot 1\cdot 15 } = {49 – 60} = -11$

$\Delta\lt 0$

Mais uma equação sem solução no conjunto dos números reais. O discriminante é negativo. 

$$\color{Purple}{V = {\emptyset}}$$

6. $\color{Indigo}{ x² + 8x + 16 = 0 }$

Os coeficientes são:

${ a= 1 }$ ${b=8}$ ${c = 16}$

Vamos ao discriminante:

$\Delta = {b² – 4ac} $

$\Delta = {8² – 4\cdot 1\cdot 16} = {64-64} = 0 $

$ \Delta = 0 $

Com o discriminante igual a zero, mais uma vez temos duas raizes reais e iguais. 

$x= {{-b\pm\sqrt{\Delta}}\over 2a} $

$ x= {{-8\pm\sqrt{0}}\over 2\cdot 1} $

$ x= {{-8}\over 2} = -4 $

$ x’ = x” = -4 $

$$\color{Purple}{V = {\{ -4\}}}$$

7. $\color{Indigo}{ x² -4x – 77 = 0 }$

Coeficientes:

${a=1 }$

${b=-4}$

${c=-77}$

Calculando o discriminante:

$\Delta = {b² – 4ac} $

$\Delta ={(-4)² – 4\cdot 1\cdot (-77)} = 16 +308 = 324 $ $\Delta \gt 0$ 

Com o discriminante positivo, temos duas raízes reais e diferentes. 

$ x = {{-b\pm\sqrt{\Delta}}\over 2a} $

$ x={{-(-4)\pm\sqrt{324}}\over 2\cdot 1} $

$x= {{ 4 \pm 18}\over 2} $

As raízes são:

$x’ = {{4 + 18}\over 2} = {{22}\over 2} = 11$

$ x” = {{4 – 18}\over  2 } = {{-14}\over 2} = -7 $

$$\color{Purple}{V = {\{-7, 11\}}}$$

Havendo dúvidas, consulte para esclarecimentos por um dos canais abaixo.

Curitiba, 11 de maio de 2016

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/decio.adams

www.facebook.com/livros.decioadams

www.facebook.com/decioadams.matfisonline

http://decioadamsold.netspa.com.br

Fone: (41) 3019-4760

Celula e WhatsApp: (41) 99805-0732

01.055 – Matemática, Álgebra. Exerícios resolvidos de Equações do 2º Grau

Hora de exercitar.

Nosso cérebro, com todas as suas funções, pode ser comparado a um atleta. Quanto mais ele for bem tratado, alimentado, mas não submetido à exercícios, não será campeão de coisa nenhuma. Portanto vamos buscar os exercícios passados no post onde mostramos a Fórmula de Bhaskara e resolvê-los juntos. Vale dizer que essa fórmula e tudo que diz respeito às equações do segundo grau, é de constante aplicação na continuação dos estudos de matemática, física e outras disciplinas. Qualquer caminho que você resolva seguir em seus estudos, haverá um momento ou mesmo muitos em que irá aplicar esse assunto.

Vamos aos exercícios portanto.

a) $\color{Orchid}{x^2 -4x + 3 = 0}$

Vamos começar por identificar os coeficientes dessa equação. Isso sempre começa pela comparação com a forma geral da equação:

$ ax² + bx + c = 0 $

$ a = 1 $

$ b = -4 $

$ c = +3 $

Feito isso podemos começar por substituir esses coeficientes na fórmula

$ x = {{-b \pm\sqrt{b² – 4ac}}\over 2a} $

$ x = {{ -(-4)\pm\sqrt{(-4)² – 4\cdot 1\cdot (+3)}}\over 2\cdot 1}$

$ x = {{+4 \pm\sqrt{16 – 12}}\over 2} $

$ x = {{ 4 \pm\sqrt{4}}\over 2}$

$ x = {{ 4 \pm 2}\over 2 } $

Hora de determinar as duas raízes diferentes, que caracterizam as equações do segundo grau.

$ x’ =  {{ 4 + 2}\over 2} = {6\over 2} = +3 $

 $ x” = {{ 4 – 2}\over 2} = {2\over 2} = + 1 $

$$\color{NavyBlue}{V = \{ +1, +3\}}$$

b) $\color{Orchid} {x^2 -2x – 15 = 0} $

$ {a = 1} $

$ {b = -2 }$

${c = -15} $

Substituindo

${ x = {{-(-2)\pm\sqrt{(-2)² -4\cdot a\cdot (-15)}}\over {2\cdot 1}}} $

$ {x = {{ +2 \pm\sqrt{+4 + 60}}\over 2}}$

$  {x = {{ 2 \pm\sqrt{64}}\over 2}} $

$ {x = {{2\pm 8}\over 2} }$

${x’ = {{ 2 + 8}\over 2} }$

$ {x= {10\over 2} = 5} $

${ x” = {{2 – 8}\over 2} = {-6\over 2} = -3} $

$$\color{NavyBlue} {V = {\{ -3, +5 \}}}$$

c) $\color{Orchid}{x^2 + 2x -35 = 0}$

${ a = 1 }$

$ {b = 2 }$

${ c = -35 }$

Substituindo:

$ {x = {{ -2 \pm\sqrt{(+2)^- 4\cdot 1\cdot (-35)}}\over {2\cdot 1}}} $

${ x = {{ -2 \pm\sqrt{4 + 140}}\over 2} }$

$ {x = {{ – 2\pm\sqrt{144}}\over 2}}$

$ {x = {{-2 \pm 12}\over 2}}$

$ {x’ = {{-2 + 12}\over 2} = {10\over 2} = 5}$

$ {x”= {{-2 – 12}\over 2} = {-14\over 2} = -7 }$

$$\color{NavyBlue}{V ={\{ -7 , +5\} }}$$

d) $\color{Orchid}{4x^2 -8x + 3 = 0}$

Identificando os coeficientes:

${ a = 4} $

${b = -8}$

${ c = 3 }$

Substituindo na fórmula:

${ x = {{-(-8) \pm\sqrt{(-8)² – 4\cdot 4\cdot 3}}\over{2\cdot 4}}}$

$ {x= {{ 8\pm\sqrt{64 – 48}}\over 8}}$ $ {x = {{8 \pm\sqrt{16}}\over 8}}$ $ {x = {{ 8 \pm 4}\over 8}}$

As raízes serão:

$ {x’ = {{8 + 4}\over 8} = {12\over 8} = {3\over 2}} $

$ {x” = {{8 – 4}\over 8} = {4\over 8} = {1\over 2}}$

$$\color{NavyBlue}{ V = {\{{1\over 2}, {3\over 2}}\}} $

e) $\color{Orchid}{3x^2 + 5x – 2 = 0} $

Os coeficientes são:

${a = 3 }$

${b = 5 }$

${c = -2}$

Substituindo na fórmula teremos:

${x = {{-(-5)\pm\sqrt{(-5)² – 4\cdot 3\cdot (-2)}}\over {2\cdot 3}}} $

${x = {{ 5 \pm\sqrt{25 + 24}}\over 6}}$

${x = {{5\pm\sqrt{49}}\over 6}}$

${{ 5 \pm 7}\over 6} $

As raízes serão:

$ {x’ = {{5 + 7}\over 6} = {12\over 6} = 2}$

${ x” = {{5 -7}\over 6} = {- 2\over 6} = {-{1\over 3}} }$

$$\color{NavyBlue} {V = {\{-{1\over3}, 2\}}}$$

 f) $\color{Orchid}{4x^2 + 4x – 15 = 0}$

Os coeficientes numéricos são:

$ {a=4 }$

${b = 4}$

${c=-15}$

Substituindo na fórmula fica:

$ {x= {{- 4 \pm\sqrt{4² – 4\cdot 4\cdot(-15)}}\over {2\cdot  4}}} $

$ {x = {{-4\pm\sqrt{16 +240}}\over 8}} $

$ {x= {{-4 \pm\sqrt{256}}\over 8}}$

$ {x = {{-4 \pm {16}}\over 8}}$

As raízes são pois:

${x’ = {{-4+16}\over 8} = {{12}\over 8} = {{3}\over 2}}$

${ x” = {{-4 – 16}\over 8} = {{-20}\over 8} = {{-5}\over 2}}$

$$\color{Orchid}{V = {\{-{{5}\over2}, {{3}\over 2}\}}}$$

g) $\color{Orchid}{x^2 + 3x – 40 = 0}$

Os coeficientes são:

${a = 1}$

${b = 3}$

${c = -40}$

Vamos substituir na fórmula:

${x={{- 3\pm\sqrt{3² – 4\cdot 1\cdot (-40)}}\over{2\cdot 1}}}$

${x = {{-3\pm\sqrt{9 + 160}}\over 2}}$ ${x={{-3\pm\sqrt{169}}\over 2}}$

$ {x= {{- 3\pm 13}\over 2}}$

As raízes serão: ${ x’ ={{-3 + 13}\over 2} = {{10}\over 2} = 5}$

${x”= {{-3 – 13}\over 2} = {{-16}\over 2} = -8 }$

$\color{NavyBlue}{V = {\{ {- 8}, 5\}}}$$

Curitiba, 11 de maio de 2016. Revisado e republicado em 26 de dezembro de 2017.

Décio Adams

[email protected]

[email protected]

www.facebook.com/decio.adams

www.facebook.com/livros.decioadams

http://decioadamsold.netspa.com.br

www.facebook.com/decioadams.matfisonline

Fone:(41) 3019-4760

Celular:(41) 99805-0732

01.054 – Matemática, Álgebra, Equações incompletas do 2º Grau.

Incompletas?

Isso mesmo. Até o presente momento, vimos só as equações do segundo grau, ditas completas, isto é, contendo coeficientes numéricos diferentes de zero em todos os termos, na forma geral.

$$\color{NavyBlue}{ ax² + bx + c = 0 }$$

Mas há as equações do segundo grau que têm um dos coeficientes igual a zero (0), com exceção do a, pois nesse caso deixaria de ser do segundo grau, passando a ser uma equação do primeiro grau. Temos, pois, a possibilidade de uma equação com os coeficientes ou c iguais a zero (0). Elas ficam com a forma:

$$\color{Orchid} {ax² + c = 0}$$

$$\color{Orchid} {ax² + bx = 0} $$

$$\color{Orchid} {ax² = 0} $$

Continue lendo “01.054 – Matemática, Álgebra, Equações incompletas do 2º Grau.”

01.053 – Matemática, Álgebra, equações do segundo grau.

As raízes das equações e os coeficientes numéricos

Nós já vimos a influência dos coeficientes na existência ou não de raízes nas equações do segundo grau, calculando o coeficiente numérico. Agora nós iremos analisar o que tem a ver a soma e o produto das raízes, com os coeficientes numéricos da equação. Partimos outra vez da fórmula de Bhaskara.

$$\color{Indigo}{ x = {{- b \pm\sqrt{b² – 4ac}}\over 2a}} $$

Podemos obter as raízes separadamente, pela soma e subtração da raiz quadrada do discriminante.

$ x’ = {{-b +\sqrt{b² – 4ac}}\over 2a }$

$x” = {{-b – \sqrt{b² – 4ac}}\over 2a} $

Continue lendo “01.053 – Matemática, Álgebra, equações do segundo grau.”

01.052 – Matemática, Álgebra, Equação do segundo grau: Discriminante.

Equação do segundo grau com e sem solução

Vamos lembrar da Fórmula de Bhaskara e analisar com atenção uma parte dela. Vamos deter nossos olhos na parte que está sob o sinal de raiz quadrada, precedido dos sinais $\pm$.

$$\color{Indigo}{ x = {{-b \pm\sqrt{b^2 – 4ac}}\over 2a}}$$

Nossa atenção deve ser especial sobre essa parte da fórmula, pois sabemos do estudo das raízes de números relativos que, as raízes de índice par só existem para os números positivos e que isso se deve ao fato de só existirem números reais positivos, resultantes de qualquer outro número real elevado a um expoente par.

Como consequência, se a expressão existente sob o radical tiver um valor negativo, não vai haver solução da equação no conjunto dos números reais. Essa expressão é denominada discriminante e costuma ser representada pela letra grega Δ. Assim, teremos:

$$\color{Orchid}{ \Delta = b^2 – 4ac}$$

Continue lendo “01.052 – Matemática, Álgebra, Equação do segundo grau: Discriminante.”

01.051 – Matemática, Álgebra, Equação do segundo grau.

Equação do segundo grau

Vimos a equação do primeiro grau, onde a incógnita (variável), tem o expoente igual a unidade. Agora é a vez de termos uma igualdade algébrica, com uma incógnita e o expoente máximo é igual a 2. A forma algébrica dessa equação é formada por um trinômio, igualado a zero. Assim:

$$\color{NavyBlue}{ ax^2 + bx +c = 0} $$

As letras a, b c, substituem as constantes, isto é, os coeficientes numéricos. Assim, temos um termo com expoente 2, um termo com expoente 1 e o terceiro termo, chamado de termo independente, pois não contém variável, onde consideramos o expoente da mesma igual a zero (0).

Um pouco de história.

A equação do segundo grau é conhecida, em sua forma primitiva há milhares de anos. Há notícias dela nos registros da época dos babilônios. Posteriormente vários matemáticos da Índia deixaram trabalhos relacionados com ela. Hoje usamos na resolução das equações do segundo grau uma fórmula, que leva o nome de um desses matemáticos. É conhecida como Fórmula de Bhaskara. Somos levados a acreditar que foi ele quem desenvolveu a fórmula, porém ela já existia. Ele apenas lhe deu a forma final, ou seja, ele a aprimorou, dando-lhe a forma aproximada do que usamos hoje. Foi no fim da Idade Média, começo do Renascimento que ela recebeu os retoques finais, ficando como é hoje. Vejamos o que é afinal essa fórmula.

$$\color{Sepia}{{x} = { – b \pm \sqrt{b^2 – 4ac}\over2a}}$$

Na hora de determinar as soluções de qualquer equação do segundo grau, bastará usar esta fórmula e teremos como resultado dois valores, o que é uma característica dessas equações. O número de raízes (soluções) corresponde ao numeral indicativo do grau.

Mas cabe uma pergunta, que provavelmente, pelo menos alguns, estarão se fazendo nesse momento. Como se chega a essa fórmula, partindo da forma geral da equação? Será que alguém, em uma linda noite de luar, olhou para as estrelas e, num lampejo de clarevidência, teve uma iluminação, sentou-se e escreveu a fórmula? Isso seria uma linda fábula infantil, que, nos dias de hoje, até as crianças teriam dificuldade em aceitar. E logicamente não foi assim. Provavelmente o raciocínio foi sendo aperfeiçoado ao longo de gerações, até que se deparou finalmente com essa forma que usamos hoje, o que ocorreu depois da era renascentista.

Vamos ver como se pode mostrar que a fórmula é realmente a solução para as equações do segundo grau. É necessário usar alguns artifícios e aplicar o raciocínio algébrico, aritmético até chegar ao resultado final. Começamos por eliminar o termo independente no primeiro membro, pela adição de um termo (- c) aos dois membros da equação. Assim teremos:

$$\color{Sepia}{ax^2 + bx + c – c = -c }$$

$$\color{Sepia}{ax^2 + bx = -c }$$

Se multiplicarmos todos os termos da igualdade por um determinado valor, a igualdade permanece. Não podemos introduzir elementos estranhos na expressão e por isso vamos multiplicar tudo por $${4a}$$, o que nos leva à seguinte expressão.

$${(ax^2 + bx)}\cdot{(4a)} = {(-c)}\cdot{(4a)} $$

$${ 4a^2x^2 + 4abx} = -4ac $$

Observemos o primeiro membro da equação, nesse ponto. Podemos notar que está faltando apenas um termo $ b^2$ para resultar em um trinômio quadrado perfeito, isto é, o quadrado da soma de dois números. Então podemos chegar a isso, se adicionarmos esse termo aos dois membros da equação e teremos:

$${4a^2x^2 + 4abx + b^2} = {b^2 – 4ac}$$

Se o primeiro membro agora é um trinômio quadrado perfeito, podemos substituí-lo pelo quadrado da soma correspondente. Basta extrairmos a raiz quadrada dos termos que são quadrados perfeitos e poderemos escrever:

$${4a^2x^2 + 4abx + b^2} = {(2ax + b)}^2 $$

Agora podemos substituir na equação do segundo grau o primeiro membro por esse quadrado da soma.

$${(2ax + b)}^2 = b^2 – 4ac $$ Na continuação, extraímos a raiz quadrada de ambos os membros, o que resulta assim:

$$\sqrt{{(2ax + b)}^2} = \sqrt{b^2 – 4ac} $$

Note que no primeiro membro, temos a raiz quadrada de um binômio elevado ao quadrado, o que nos permite cancelar o índice com o expoente, isto é, resta apenas o binômio, sem o expoente nem o radical. Fica assim:

$$ 2ax + b = \sqrt{b^2 – 4ac} $$

Se somarmos aos dois membros o simétrico do termo b, teremos:

$$ 2ax + b – b = -b\pm\sqrt{b^2 – 4ac} $$

$$ 2ax = – b\pm\sqrt{b^2 – 4ac} $$

Dividindo ambos os membros por (2a), estaremos terminando a demonstração.

$${2ax\over 2a} = {{-b\pm\sqrt{b^2 – 4ac}}\over 2a}$$

$$\color{Orchid}{{x} ={{-b^+_-\sqrt{b^2 – 4ac}}\over 2a}}$$

E esta é a fórmula mostrada no começo, conhecida mundialmente como Fórmula de Bhaskara e usada em toda parte para solucionar inúmeros problemas envolvendo as equações do segundo grau.

Lembre-se do que falamos nos parágrafos anteriores. Essas equações têm duas soluções ou raízes. Como isso é obtido?

Olhando bem para a fórmula, vemos que o radical existente no segundo membro é precedido pelos sinais (+) e (-). Isso se deve ao fato de que um número elevado ao quadrado, sempre resulta em positivo. Consequentemente, para cada número positivo, existem duas raízes quadradas simétricas. Por exemplo: $\sqrt{ + 4} = \pm {2}$, pois tanto ${(+2)}^2 = + 4 $ quanto ${(-2)}^2 = +4$

Podemos então dizer que existem duas soluções ou raízes (x’  x”) para a equação do segundo grau. Iremos obter essas soluções, da seguinte maneira:

$${x’} = {{-b +\sqrt{b^2 – 4ac}}\over 2a} $$

$${x”} = {{-b – \sqrt{b^2 – 4ac}}\over 2a} $$

Uma das soluções é obtida pela soma do resultado da raiz quadrada e a outra pela subtração. Isso traz algumas considerações que serão vistas mais adiante. Por enquanto, vejamos como se aplica essa fórmula na solução de uma equação do segundo grau.

Obs.:Essa demonstração não é cobrada em provas e concursos, salvo em se tratando de concurso para professores de matemática. Eu costumo mostrar para que o aluno saiba que ela não surgiu do nada. Existe todo um raciocínio que leva a esse resultado final. Mesmo não sendo exigida a memorização da demonstração, o fato de saber que ela existe e é obtida seguindo uma lógica, serve de estímulo ao entendimento e aplicação da mesma.

Seja a equação $$\color{Red}{x^2 + x – 6 = 0}$$

Começamos por identificar os coeficientes numéricos. Vamos comparar essa equação com a forma geral. Escrevendo lado à lado, temos:

$${ax^2 + bx + c = 0} $$

$${x^2 + x – 6 = 0}$$

Comparando as duas, vemos que o coeficiente ${a = 1} $ ${b = 1}$ ${c} = {-6} $. Substituindo na fórmula, teremos:

$${x} = {{-1 \pm\sqrt{1^2 – 4\cdot {1}\cdot{(-6)}}}\over {2\cdot{1}}} $$

$${x} = {{-1\pm\sqrt{1 + 24}}\over 2} $$

$${x} = {{-1\pm\sqrt{25}}\over 2}$$

$${x} = {{-1\pm5}\over 2} $$

Agora é a hora de separar para obter as duas raízes.

$${x’} = {{-1 + 5}\over 2} $$

$$ {x’} = {{4\over 2}}$$

$ x’ = 2 $

$${x”} = {{-1 – 5}\over 2}$$

$${x”} = {-6\over 2} $$

$ x” = -3$

Daí resulta que: \[\color{Blue}{V = \{ -3, 2\}}\]

A equação dada, torna-se uma expressão verdadeira se substituirmos o x por -3 ou por 2. Basta verificar.

$$\begin{align} {(-3)}^2 + (-3) – 6 = 9 – 3 – 6 &= 0\end{align}$$

$$\begin{align}{2^2 + 2 – 6} = 4 + 2 – 6 &= 0\end{align}$$

Agora é hora de praticar.

Determine os conjuntos verdade ou as soluções das equações do segundo grau a seguir.

a)$\color{Sepia}{x^2 -4x + 3 = 0}$

b)$\color{Sepia} {x^2 -2x – 15 = 0} $

c)$\color{Sepia} {x^2 + 2x -35 = 0}$

d)$\color{Sepia} {4x^2 -8x + 3 = 0}$

e)$\color{Sepia} {3x^+ 5x – 2 = 0} $

f)$\color{Sepia} {4x^2 + 4x – 15 = 0}$

g)$\color{Sepia}{x^2 + 3x – 40 = 0}$

Curitiba, 06 de maio de 2016. Republicado em 22 de dezembro de 2017.

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732