Matemática – Geometria. Geometria plana.

Circunferência e círculo

Acabamos de estudar os polígonos regulares e neles foi possível observar que, na medida em que aumenta o número de lados, a forma do polígono torna-se mais arredondada. Inclusive a circunferência inscrita e circunscrita têm a medida de seus raios cada vez mais próximos um do outro. Por essa razão, quando o número de lados tende para o infinito, passamos a ter uma figura denominada circunferência.

Para simplificar, definimos a circunferência como sendo a figura λ(O,R) onde o ponto O é o centro e R é a medida do raio. Dessa forma a circunferência é uma linha poligonal fechada, cujos pontos estão todos a uma distância R do ponto O.

Os pontos A e B, estão ambos situados a distância R do centro O. Por isso dizemos que eles fazem parte da circunferência.

dOA=RdOB=RdOA=dOB

Já os pontos CD, não pertencem à circunferência, pois:

dOC<R ponto interior.

dOD>R ponto exterior.

Círculo

É frequente confundirmos círculo e circunferência. Como acabamos de ver, a circunferência é a linha poligonal fechada, ou seja, é o perímetro da figura plana, que denominamos círculo.

Assim podemos afirmar que o círculo é uma área plana, limitada por uma circunferência de mesmo raio.

Observemos a figura ao lado. É um círculo, pois tem o perímetro que é uma circunferência e todos os pontos interiores fazem parte da figura.

Comprimento da circunferência:

Houve muitos matemáticos que se empenharam em determinar uma forma de calcular o comprimento da linha perimetral do círculo, ou seja, a sua circunferência. Após muitas tentativas, chegou-se a uma aproximação aceita universalmente, tendo inclusive determinados os algarismos decimais em muitos milhares. O resultado é um número irracional π, que resulta da divisão do comprimento da circunferência pela medida do raio. As maiores dificuldades residem na determinação, com o máximo de precisão possível dessas medidas.

C=2πR

Diâmetro

É o dobro da medida do raio. É em verdade uma corda que passa pelo centro. Por isso:

D=2R

C=Dπ

Área do círculo

Para determinar a área de um círculo usamos a expressão: A=πR2

Sendo D=2RR=D2

A=π(D2)2=πD24

Semi-círculo e arco de circunferência.

Um diâmetro divide o círculo ao meio. Cada metade denominamos semi-círculo. Veja a parte em verde na figura que segue.

Qualquer segmento de reta traçado entre dois pontos da circunferência, sem passar pelo centro, é uma corda. Como podemos ver na figura ao lado. Os pontos compreendidos entre os pontos P e Q da corda, formam um arco de círculo. Do mesmo modo também os pontos da circunferência que fazem parte do semi-círculo, são um arco de círculo. Neste caso trata-se de meia circunferência.

Setor circular

Se você já cortou uma “pizza” circular, retirando uma “fatia”, essa mesma é um exemplo de setor circular. Veja na figura ao lado. Podemos calcular a área do setor circular, bastando que tenhamos a medida do ângulo formado pelos lados do setor.

Digamos que a fatia retirada tenha a medida de um ângulo de 600 ou seja π3.

Se dividirmos a área do círculo em partes iguais, cada uma a πrad e multiplicarmos pelo ângulo da fatia, teremos a área da mesma.

AS=πR22ππ3

AS=πR26

Ficaria faltando apenas a medida do raio do círculo.

Ângulo central é o ângulo de um setor circular. O vértice fica no centro do círculo.

Vale lembrar que o resto do círculo também será um setor circular.

Coroa circular

Forma-se uma coroa circular se cobrirmos um círculo maior, por um outro, pouco menor que o primeiro, de modo que os centros fiquem coincidentes. Ficará aparecendo apenas uma estreita faixa do primeiro. É essa faixa que denominamos coroa circular.

A área da coroa circular é a diferença entre as áreas dos dois círculos sobrepostos, o que pode ser resumido assim:

Acor=πR22πR12

Acor=π(R22R12)

Exercícios

01. A respeito da definição básica das circunferências e de suas propriedades, assinale a alternativa correta.

( )a) uma circunferência é uma região plana limitada por um círculo;

( )b) uma circunferência é um conjunto de pontos cuja distância até o centro é sempre menor do que a constante r;

( )c) uma circunferência possui apenas dois raios e a soma desses dois elementos é igual ao diâmetro;

( )d) uma circunferência de centro O e raio r é um conjunto de todos os pontos cuja distância até O é igual a r;

( )e) círculo é a região do plano limitada por um diâmetro.

02. Dada uma circunferência de centro O e raio r, assinale a alternativa correta:

( )a) dado um ponto A, fora da circunferência, o segmento OA é menor ou igual a r;

( )b) sabendo que OA tem comprimento menor do que r, pode-se afirmar que A pertence ao círculo limitado por essa circunferência;

( )c) sabendo que OA tem comprimento maior do que r, pode-se afirmar que A pertence à circunferência;

( )d) o diâmetro do círculo limitado por essa circunferência é igual a 3r;

( )e) para que o ponto A pertença à circunferência, basta que a distância AO seja menor do que r.

03. Determinar o diâmetro e a área de um círculo (respectivamente), cujo perímetro mede 36π cm.

( )a) 63,0cm300πcm2;

( )b) 36,0cm324πcm2;

( )c) 50,0cm324πcm2;

( )d) 36,0cm300πcm2;

( )e) 43,0cm324πcm2.

04. A roda de um automóvel tem um diâmetro que mede D=50cm. Determine a distância percorrida por esse veículo após uma de suas rodas completar 1750 voltas. Adotarπ=3,14 e supor que a roda não deslize durante a rolagem.

( )a) 2,82 km;

( )b) 3 km;

( )c) 3,6 km;

( )d) 2,75 km;

( )e) 2,91 km.

05. Um morador possui em sua casa um espaço, usado para o cultivo de algumas plantas. O formato desse canteiro é de um setor circular de raio r=10m. Sabendo que o ângulo central desse setor circular é de α=600, qual é a área do espaço usado para plantio na casa desse jardineiro?

( )a) 52,33m2;

( )b) 10,47m2;

( )c) 31,4m2;

( )d) 20,94m2;

( )e) 100m2.

06. Testes efetuados em um pneu de corrida constataram que, a partir de 185 600 voltas, ele passa a se deteriorar, podendo causar riscos à segurança do piloto. Sabendo que o diâmetro do pneu é deD=0,5m, ele poderá percorrer, sem riscos para o piloto, aproximadamente:

( )a) 93 km;

( )b) 196 km;

( )c) 366 km;

( )d) 592 km;

( )e) 291 km.

07. O ponteiro dos minutos de um relógio meder=4cm. Supondo π=3, a distância, em centímetros, que a extremidade desse ponteiro percorre em 25 minutos é:

( )a) 15;

( )b) 12;

( )c) 20;

( )d) 25;

( )e) 10.

08. Em um motor há duas polias ligadas por uma correia, de acordo com o esquema abaixo.

figura_02.jpg

Se cada polia tem raio de 10 cm e a distância entre seus centros é de 30 cm, qual das medidas abaixo mais se aproxima do comprimento da correia?

( )a) 122,8 cm;

( )b) 102,4 cm;

( )c) 92,8 cm;

( )d) 50 cm;

( )e) 32,4 cm.

09. Os raios das rodas traseiras de um trator medem r=75cm e dão 30 voltas, ao mesmo tempo em que as rodas dianteiras dão 90 voltas. O raio de cada uma das rodas dianteiras mede:

( )a) 20 cm;

( )b) 30 cm;

( )c) 25 cm;

( )d) 18 cm;

( )e) 24 cm.

10. Qual o perímetro de uma circunferência cujo raio mede 3 cm?

Aplicando a fórmula:

C=2πr

$C={2\cdot{3,14}\cdot 3}

C=18,84cm

11. (Enem–2010). Uma fábrica de tubos acondiciona tubos cilíndricos menores dentro de outros tubos cilíndricos. A figura mostra uma situação em que quatro tubos cilíndricos estão acondicionados perfeitamente em um tubo com raio maior.

Suponha que você seja o operador da máquina que produzirá os tubos maiores em que serão colocados, sem ajustes ou folgas, quatro tubos cilíndricos internos. Se o raio da base de cada um dos cilindros menores for igual a 6 cm, a máquina por você operada deverá ser ajustada para produzir tubos maiores, com raio da base igual a

( )a) 12cm;

( )b) 122cm;

( )c)242cm;

( )d) 6(1+2)cm

( )e)12(1+2)cm

Se ficarem dúvidas, peça ajuda pelos canais abaixo listados. Não guarde suas dificuldades para si. Compartilhe que lhe ajudarei.

Curitiba, 15 de fevereiro de 2020

Décio Adams

decioa@gmail.com  

adamsdecio@gmail.com

canalmatfisonline@gmail.com

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732