Matemática – Geometria. Geometria Plana. Polígonos

Hexágono regular

Recapitulando os polígonos regulares vistos até aqui, veremos que em todos eles existe um ponto central, onde ocorre a divisão da circunferência em triângulos congruentes.

No triângulo equilátero temos o baricentro.

As linhas que unem os vértices ao meio do lado oposto, se interceptam no centro geométrico. Cada lado subtende um ângulo central de 120º, o que perfaz uma volta completa de 360º.

O quadrado tem esse ponto determinado pelas duas diagonais, que são perpendiculares entre si, formando quatro ângulos de 90º.

É fácil perceber que as duas diagonais dividem o círculo, tanto inscrito, quanto o circunscrito em quatro partes iguais, cada uma subtendendo um ângulo central de 90º.

O pentágono regular também tem esse ponto. É o centro geométrico do polígono.

As linhas medianas, que unem os vértices ao meio dos lados opostos, formam cinco triângulos, que têm um vértice comum no ponto de intersecção dessas linhas. Cada um deles mede exatamente 72º.

Hexágono

Seguindo o mesmo critério, as linhas medianas irão dividir o hexágono em seis triângulos equiláteros. Cada um dos ângulos centrais mede então $60^{0}$. Os outros dois ângulos dos triângulos juntos medem $120^{0}$, sendo que são congruentes e portanto medem também $60^{0}$.

Podemos observar perfeitamente a existência de seis triângulos equiláteros, formando o hexágono regular.

Sendo triângulos equiláteros, sabemos que a altura, neste caso vem a ser o apótema do hexágono; o raio R é congruente ao lado do hexágono. Então podemos determinar o apótema pela expressão:

$ l² = a² + {\left(l\over 2\right)}^{2}$$\Leftrightarrow$$a² = {{4\cdot l² – l²}\over4}$

$\sqrt {a²} = \sqrt{{3\cdot l²}\over4}$

$a = {{l\sqrt{3}}\over 2}$

Área do triângulo e do hexágono.

$S_{\Delta} = {{{{l\cdot l\sqrt{3}}}\over 2}\over 2}$

$S_{\Delta} = {{l²\sqrt{3}}\over4}$

A área do hexágono é a área de um triângulo multiplicado por 6.

$S_{hex} = 6\cdot{l²\sqrt{3}\over4} = 3\cdot{l²\sqrt{3}\over 2}$

Medida dos ângulos internos do hexágono regular.

Cada um dos seis vértices do hexágono é formado por dois ângulos adjacentes de 60^{0}. Isso faz com que cada ângulo interno seja igual a 120^{0}.

Desta forma a soma dos ângulos internos do hexágono regular é dada por:

$S_{i6} = 6\cdot 120º$

$S_{i6} = 720º$

Círculos inscrito e circunscrito ao hexágono

O lado do hexágono é a medida do raio da circunferência circunscrita e o apótema é a medida do raio da circunferência inscrita. Veja a figura.

Os dois círculos devidamente traçados, dentro e fora do hexágono.

Exercício 1. Um hexágono tem lado medindo ${l = 2,0 m}$. Determinar: a) o raio da circunferência circunscrita; b) o raio da circunferência inscrita; c) a área de um dos triângulos equiláteros internos; d) a área total do hexágono.

a) o raio da circunferência circunscrita é congruente ao lado do hexágono

${R = 2,0 m}$

b)o raio da circunferência inscrita é o apótema do hexágono.

$a = {{l\sqrt{3}}\over2}$$\Leftrightarrow$$a = {{2\sqrt{3}}\over 2}$

$a = \sqrt{3} m$

c)Temos acima a fórmula da área do triângulo.

$S_{\Delta} = {{l²\sqrt{3}}\over 4}$$\Leftrightarrow$$S_{\Delta}={{2,0}^2\sqrt{3}\over 4}$

$S_{\Delta} = \sqrt{3} m²$

d) a área toda é seis vezes a área do triângulo.

$S_{hex}= {6\cdot{l²\sqrt{3}}\over 4}$

$S_{hex} = {6\cdot\sqrt{3} m²}$

Exercício 2. Um hexágono regular está inscrito em uma circunferência de raio $R = 80,0 cm$. Determinar: a) o lado do hexágono; b) o apótema do hexágono; c) a área de um dos triângulos que formam o hexágono; d) a área total do hexágono;

a)as diagonais que unem os vértices dos ângulos internos opostos, determinam o centro da figura e dividem o hexágono em seis triângulos equiláteros. Assim ficamos com o lado igual ao raio da circunferência.

$l = R$$\Leftrightarrow$$ l = 80,0 cm$

b)o apótema coincide com a altura do triângulo equilátero.

$a = {{l\cdot\sqrt{3}}\over 2}$

$a = {{{80,0}\cdot\sqrt{3}}\over2} = 40,0\sqrt{3}cm$

c)$S_{\Delta} = {{l²\sqrt{3}}\over4}$

$S_{\Delta} = {{{80,0}^{2}\sqrt{3}}\over 4}$$\Leftrightarrow$$ S_{\Delta} = {{{6400,0}\sqrt{3}}\over4} = 1600,0\sqrt{3} cm^2$

d)o hexágono é formado por seis triângulos.

$S_{hex} = 3\cdot{{l^2\sqrt{3}}\over 2}$

$S_{hex} = 3\cdot{{{80,0}^{2}\sqrt{3}}\over2} = {9600,0}\sqrt{3} cm^2$

Heptágono regular

É sem dúvida um dos polígonos com poucos lados que é mais difícil de construir. Isso pelo fato de a divisão dos $360^{0}$ por sete ser um número decimal não exato. Isso torna as medidas dos lados sempre aproximados, bem como os ângulos.

Vejamos

${360 \div 7 = 51,428571…^{0}}$ ou ${51^{0}25’42,857…”}$

Nem mesmo fazendo a divisão em graus, minutos e segundos o resultado é exato, mas difere muito pouco disso.

Sabendo que a soma dos ângulos internos de qualquer triângulo é de $180^{0}$, teremos que os dois ângulos restantes de cada triângulo será:

$ {\hat{r} + \hat{s} + \hat{t} = 180^{0}}$

${{(51º25’42,857…”)} + \hat{s} + \hat{t} = 180^{0}}$

Como os dois ângulos são congruentes $\hat{s} = \hat{t}$

${2\cdot\hat{s} = 180º – 51,428571º}$$\Leftrightarrow$${2\cdot\hat{s} = 128,57143º}$

${\hat{s} = 64,28572º}$

Temos aí a dificuldade de construir esse polígono, mesmo usando instrumentos de desenho.

O processo de construção do heptágono regular requer o uso de instrumentos de desenho, como régua, esquadro e principalmente compasso. Usei a ideia aplicando as opções do paint e consegui fazer algo que se aproxima da figura correta.

As imprecisões devem-se ao fato de não ser possível manter a exatidão das formas que o programa oferece. Precisamos usar muito de nossa acuidade visual.

O heptágono, traçando-se um segmento que une os vértices ao meio dos lados opostos, fica dividido em sete triângulos isósceles, cujo ângulo central é o determinado acima $51,428571…º$ o que resulta em ângulos de $64,28572…º$ adjacentes aos lados do heptágono. O apótema dividirá esses ângulos internos em dois triângulos retângulos congruentes.

O triângulo ao lado simboliza um dos sete triângulos em que fica dividido o heptágono. Vamos estabelecer a relação entre o lado do polígono e o raio da circunferência, bem como o apótema.

Cada um dos dois triângulos retângulos que obtemos com o traçado do apótema têm como lados o raio R, l/2 e o apótema. R é a hipotenusa. Logo:

${R² = a² +{\left(l\over2\right)}²}$ (I)

${{l\over2} = {R\cdot{cos(64,28572º)}}}$$\Leftrightarrow$${l = 2\cdot{R}\cdot{cos(64,28572º)}}$

${l\simeq {0,868}\cdot{R}}$ (II)

O lado do hexágono é aproximadamente igual a 0,868 R.

Substituindo (II) em (I):

${R^2 = a^2 + \left({{0,868\cdot{R}}\over 2}\right)^{2}}$$\Leftrightarrow$${a^2 = R^2 – {{R^2\cdot{(0,753)}}\over 4}}$

${\sqrt{a^2} = \sqrt{{{4R^2 – 0,753R^2}\over 4}}}$$\Leftrightarrow$$a = \sqrt{{R^2\cdot{(4 – 0,753)}\over 4}}$

$a = R\cdot\sqrt{(3,247)}\over 2 $$\Leftrightarrow$$a = R\cdot{(1,8019)}\over 2$

${a\simeq 0,9R}$

O apótema de um heptágono regular é aproximadamente igual a nove décimos do raio da circunferência circunscrita.

Área de um Heptágono regular

Primeiro vamos estabelecer a área de cada um dos triângulos isósceles que formam um heptágono regular.

A base é o lado: $ l\simeq 0,868 R$

A altura é o apótema: $a\simeq 0,9R$

$S_{\Delta} = {{(0,868)\cdot R}\cdot {(0,9)\cdot R}\over 2}$ $\Leftrightarrow$$S_{\Delta} = {{{0,78}\cdot{R}}\over 2}$

$S_{\Delta} = 0,39R$

Sendo sete triângulos, basta multiplicar o resultado por esse número.

$S_{hep} = 7\cdot{(0,39R)}$$\Leftrightarrow$$S_{hep} \simeq{2,73R}$

Exercício 1. Um heptágono é inscrito num círculo de raio $R = 1,2 m$. Determine: a) o lado do heptágono; b) o apótema do heptágono; c) a área de cada triângulo isósceles que formam o heptágono; d) a área do heptágono.

$R = 1,2 m$

a) $l \simeq 0,868 R$

$l\simeq {0,868}\cdot {1,2}\simeq{1,042} m$

b)$a \simeq {0,9}\cdot {R} $

$a\simeq{0,9}\cdot {1,2}\simeq 1,080 m$

c)$S_{\Delta_{7}}\simeq {0,39}\cdot {R}$

$S_{\Delta_{7}}\simeq {0,39}\cdot{1,2} \simeq{0,468} m²$

d)$S_{hep}\simeq{2,73}\cdot{R}$

$S_{hep}\simeq{2,73}\cdot{1,2}\simeq {3,276} m^2$

Exercício 2. O apótema de um heptágono é igual a $a = 0,50 m$. Determine: a) o lado do apótema; b) a área de um dos triângulos internos; c) o raio do círculo circunscrito ao heptágono; d) a área do heptágono.

$a = {0,50}m$

$a\simeq{0,9}R$$\Leftrightarrow$$ R = {a\over{0,9}}$

a)$l\simeq{0,868}R$$\Leftrightarrow$$l\simeq{0,868}\cdot{{0,50}\over{0,9}}$

$l\simeq {{0,434}\over{0,9}}\simeq{0,482}\, m$

b)$S_{\Delta_{7}} = {0,39}\cdot {a\over{0,9}}$

$S_{\Delta_{7}}= {0,39}\cdot{0,50\over{0,9}}\simeq{0,216} m^2$

c) $a\simeq{0,9}R$

$R \simeq{\left(a\over{0,9}\right)}\simeq\left({0,50}\over{0,9}\right)\simeq{0,556} m$

d)$S_{hep}= {{2,73}\cdot{R}}$$\Leftrightarrow$$S_{hep}\simeq{2,73}\cdot{0,556}$

$S_{hep}\simeq 1,518 m^2$

Diagonais de um polígono

Quantas diagonais podemos traçar em um polígono de n lados?

Vimos que uma diagonal une dois vértices não consecutivos. Assim, tomando um vértice, os dois que lhe ficam consecutivos são excluídos, tal como o próprio vértice. Isso nos permite traçar, a partir de um vértice, tantas diagonais quantos forem os vértices, menos 3:

${D_{v} = n_{v} – 3}$ $\Rightarrow$ diagonais de um vértice.

Cada diagonal une dois vértices, o que nos leva a ter que dividir o número total aparente por dois.

${D_{p} = {{{(n – 3)}\cdot n}\over 2}}$$\Leftrightarrow$$ {D_{p} ={{n² -3n}\over2}}$

Este é o número de diagonais de um polígono. Vamos exercitar!

Exemplo 1. Quantas diagonais tem um pentágono?

${n_{v} = 5}$

${D_{pen} = {{n² – 3\cdot n}\over 2}}$$\Leftrightarrow$${D_{pen}= {{5² -3\cdot5}\over 2}}$

${D_{pen}= {{25 – 15}\over 2}}$$\Leftrightarrow$${D_{pen}= {10\over2} = 5}$

O pentágono tem cinco diagonais.

Exemplo 2. Quantas diagonais tem um quadrado?

${n_{v} = 4}$

${D_{qua}= {{4² – 3\cdot 4}\over 2}}$$\Leftrightarrow$$ {D_{qua}= {{16 – 12}\over 2}}$

${D_{qua} = {4\over 2} = 2}$$\Rightarrow$ quadrado tem duas diagonais.

Exemplo 3. Calcule o número de diagonais de um hexágono.

$ n_{v} = 6 $

${D_{hex}= {{6² – 3\cdot{6}}\over 2}}$$\Leftrightarrow$${D_{hex} = {{36 – 18}\over 2}}$

${D_{hex}= {18\over 2} = 9}$$\Rightarrow$ o hexágono tem 9(nove) diagonais.

Exemplo 4. Quantas diagonais tem um dodecágono?

${n_{v} = {12}}$

${D_{12} = {{(12)^2 – 3\cdot {12}}\over2}}$$\Leftrightarrow$${D_{12}={{144 – 36}\over 2}}$

${D_{12} = {{144 – 36}\over 2}$$\Leftrightarrow$${D_{12} = {{108}\over 2} = 54}$ – O dodecágono tem 54 diagonais.

Exemplo 5. Quantas diagonais possui um polígono de 20 lados?

$n_{v} = 20$

$D_{20}= {{20}^2 – 3\cdot{20}}\over 2}$$\Leftrightarrow$$D_{20} = {{400 – 60}\over 2}$

$D_{20}={{340}\over 2} = 170$

O polígono de 20 lados admite 170 diagonais.

Soma dos ângulos internos de um polígono.

Vimos que as diagonais dividem o polígono em triângulos isósceles, que se inscrevem em um círculo com o qual coincidem os vértices. Dessa forma os ângulos centrais, que tem vértice no centro do círculo, tem a medida obtida pela divisão da volta completa pelo número de lados.

$\hat{a}_{c} = {360\over n}$

Prolongando um lado além do vértice, temos um ângulo externo, que têm a mesma medida do ângulo central dos triângulos. Cada ângulo interno é suplementar do ângulo central dos triângulos.

$\hat{a}_{i} = {180º – \hat{a}_{c}}$$\Leftrightarrow$$\hat{a}_{i} = 180^{0} – {360^{0}\over n}$

$\hat{a}_{i} = {{{180^{0}\cdot n} -360^{0}}\over n}$

A soma dos ângulos internos é igual a medida de um ângulo interno multiplicada pelo número de vértices, que é igual ao número de lados.

$S_{a_{i}} = n\cdot{180^{0} – {360^{0}\over n}}$

$S_{a_{i}}= {180^{0}\cdot n – 360^{0}}$

Exemplo 1. Qual é a soma dos ângulos internos de um polígono de nove lados?

$S_{a_{9}} = {180^{0}\cdot n – 360^{0}}$

$S_{a_{9}} = 180^{0}\cdot 9 – 360^{0}$

$S_{a_{9}}= 1620^{0} – 360^{0} = 1240^{0}$

Exemplo 2. Determine a soma dos ângulos internos de um polígono de 12 lados.

$S_{a_{12}} = 180º\cdot 12 – 360 $

$S_{a_{12}} = 2160º – 360º = 1800º$

Exercícios para resolver.

01. Os hexágonos são polígonos que apresentam seis lados, seis ângulos internos e seis vértices. A respeito dos hexágonos regulares inscritos em uma circunferência, assinale a alternativa correta.

a) Um hexágono é chamado regular quando ele possui ângulos iguais, lados congruentes e não existe a necessidade de que seja convexo para isso.

b) Um hexágono regular inscrito tem a medida do apótema igual à medida do raio do círculo que o circunscreve.

c) Um hexágono regular inscrito tem a medida do lado igual à medida do raio do círculo que o circunscreve.

d) Um hexágono regular é chamado inscrito quando todos os seus lados são tangentes a uma circunferência.

e) Um hexágono regular inscrito possui apótema e lado iguais.

02. Qual é a medida do lado $l$ de um hexágono regular cujo apótema mede$a = 3,0 cm$?

a) $2\sqrt{3} cm$

b) $2 cm$

c) $\sqrt{3} cm$

d) $3\sqrt{3} cm$

e) $6\sqrt{3} cm$

03. Determine a medida do apótema de um hexágono regular, sabendo que a medida de seu lado é igual a $l =2\sqrt{3} cm.

a) $2\sqrt{3} cm$

b)$1 cm$

c) $2 cm$

d) $3 cm$

e) $\sqrt{3} cm$

04. Determine a medida do apótema de um hexágono regular inscrito em uma circunferência de diâmetro igual a $D= 12 cm$.

a) $2\sqrt{3} cm$

b) $3\sqrt{2} cm$

c) $3\sqrt{3} cm$

d) $6\sqrt{2} cm$

e) $6\sqrt{3} cm$


05. (FUVEST-2014). Uma das piscinas do Centro de Práticas Esportivas da USP tem o formato de três hexágonos regulares congruentes, justapostos, de modo que cada par de hexágonos tem um lado em comum, conforme representado na figura abaixo. A distância entre lados paralelos de cada hexágono é de 25 metros.

Modelo de piscina (Foto: Reprodução/Fuvest)

Assinale a alternativa que mais se aproxima da área da piscina.

a) $S\simeq1600 m²$;

b)$S\simeq1800 m²$;

c)$S\simeq2000 m²$;

d)$S\simeq2200 m²$

e)$S\simeq2400 m²$

06. Determine o apótema de um hexágono regular cujo lado mede $l = 200\sqrt{3}cm$. Depois calcule a área do hexágono.

07. Determine a área de um hexágono regular cujo lado mede $l = 4,0 cm$. Determine o perímetro desse polígono.

Havendo dúvidas, pergunte. Os canais estão à disposição para quando você precisar.

Curitiba, 15 de novembro de 2019

Décio Adams

[email protected]  

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732

Matemática – Geometria – Geometria Plana.

Estudo detalhado do triângulo equilátero.

Depois de termos visto o Teorema de Pitágoras, podemos aplicar esse conhecimento na determinação de elementos notáveis dos triângulos equiláteros.

Como foi visto acima, é o único triângulo classificado como figura geométrica regular. Isso implica em que o traçado de suas alturas, bissetrizes dos ângulos, medianas e mediatrizes sejam coincidentes, interceptando-se em um mesmo ponto que é o centro geométrico do triângulo ou seja é o baricentro, ortocentro, incentro e circuncentro. Iremos estabelecer modos de determinação das medidas da altura, do apótema e do raio da circunferência circunscrita.

Esses três segmentos traçados a partir dos vértices, representam todas as linhas mencionadas acima. Altura, bissetriz, mediana e mediatriz de cada lado e vértice. Interceptam-se no CG da figura.

O ponto $M$, divide o lado $\overline{BC}$ em dois segmentos congruentes, equivalentes à metade do lado do triângulo. Portanto $\overline{MC} = {{l}\over{2}}$, determinando assim um triângulo retângulo $\Delta{(AMCA)}$, onde podemos aplicar o Teorema de Pitágoras.

$\overline{AC} = l $ $\Rightarrow$ hipotenusa.

$\overline{AM} = h $ $\Rightarrow$ altura do triângulo e é um dos catetos.

$\overline{MC} = {{l}\over{2}}$ $\Rightarrow$ cateto.

${l}² = h² + ({{l}\over {2}})²$ $\Leftrightarrow$ $h² = l² – {{l²}\over{4}}$

$\sqrt{h²} = {{{{4}\cdot{l²}} – l²}\over{4}}$

$h = {{{3}\cdot{l²}}\over{4}}$ $\Leftrightarrow$ $h = \sqrt {{{3}\cdot{l²}}\over{4}} $

$h = {{{l}\cdot\sqrt{3}}\over{2}}$

O apótema equivale ao segmento que representa o raio da circunferência inscrita no interior do retângulo equilátero.

O apótema é um dos catetos do $\Delta{BMOB}$, o raio da circunferência circunscrita é a hipotenusa e $\overline{BM} = {{l}\over{2}}$ é o outro cateto.

No triângulo destacado, temos:

$\overline{BO}$ $\Rightarrow$ raio da circunferência circunscrita (hipotenusa). Equivale à diferença entre a altura e o apótema.

$R = h – a $

$\overline{BM} ={{l}\over{2}}$ $\Rightarrow$ cateto.

$a$ $\Rightarrow$ apótema que é igual ao raio da circunferência inscrita.

$R² = a² + ({{l}\over{2}})²$ $\Leftrightarrow$ ${h – a}² = a² + {{l²}\over{4}}$

${h² – 2ah + a²} = a² + {{l²}\over{4}}$ $\Leftrightarrow$ $h² – 2ah =a² – a² +{{l²}\over{4}}$

$h² – {{l²}\over{4}} = 2ah$ $\Leftrightarrow$ $a = {{h^2 – {{l^2}\over{4}}}\over{2h}}$

$a = {{\left({{l}\sqrt{3}\over{2}}\right)^2 -{l²}}\over{{2{l}\sqrt{3}}\over{2}}}$$\Leftrightarrow$$a = {{{3{l}² – {l}²}\over{4}}\over{l\sqrt{3}}}$

$a = {{2{l}²\over{4}}\over{l\sqrt{3}}}$ $\Leftrightarrow$ $a = {{l²}\over{2}}\cdot{{1}\over{l\sqrt{3}}}\cdot{\sqrt{3}\over\sqrt{3}}$

$a = {{l\sqrt{3}}\over{6}}$

Estabelecemos acima que ${R = h – a}$ de onde podemos deduzir a expressão de $R$ em função do lado do triângulo.

$R = {{l}\sqrt{3}\over{2}} – {{l}\sqrt{3}\over{6}}$

$R = {{{3\cdot{{l}\sqrt{3}}} – {{l}\sqrt{3}}}\over{6}}$

$R = {{2{l}\sqrt{3}}\over{6}}$

$R = {{l}\sqrt{3}\over{3}}$

Comparando esses três elementos, podemos estabelecer que:

${{{h}\over{a}} = {{{l}\sqrt{3}\over{2}}\over{{l}{\sqrt{3}}\over{6}}}}$ $\Leftrightarrow$ ${{{h}\over{a}} = {{{l}\sqrt{3}\over{2}}\cdot {{6}\over{{l}\sqrt{3}}}}}$

${h\over {a}} = {\not{6}\over\not{2}}$ $\Leftrightarrow$ $ a = {1\over3}\cdot h $

${{{h}\over{R}} = {{{{l}\sqrt{3}}\over{2}}\over{{{l}\sqrt{3}}\over{3}}}}$$\Leftrightarrow$${{{h}\over{R}} = {{{{l}\sqrt{3}}\over{2}}\cdot{{3}\over{l}\sqrt{3}}}}$

${{h}\over{R}} = {3\over2}$

$R = {2\over3}\cdot h$

${{a}\over{R}} = {{{{l}\sqrt{3}}\over{6}}\over{{{l}\sqrt{3}}\over{3}}}$$\Leftrightarrow$$ {{a}\over{R}} = {{{{l}\sqrt{3}}\over{6}}\cdot{{3}\over{{l}\sqrt{3}}}}$

$a = {1\over2}\cdot R$

Vejamos as circunferências inscrita e circunscrita num triângulo equilátero.

Temos aí uma circunferência inscrita num triângulo equilátero. Note que o raio da mesma é o apótema do triângulo. Este equivale à ${1\over3}$ da altura do triângulo.
Aqui, além da inscrita, temos também a circunferência circunscrita, cujo raio é exatamente igual ao dobro do apótema, ou seja ${2\over3}$ da altura do triângulo.

Perímetro

Denominamos perímetro a soma das medidas de todos os lados de um polígono. Se imaginarmos fazer uma cerca ao redor do polígono usando arame, qual seria o comprimento de um fio desse produto para dar uma volta completa? Com certeza todos dirão que é só somar os lados. Pronta a resposta. Por isso dizemos que:

Perímetro de um triângulo equilátero é a soma de seus três lados.

$ p = l + l + l$ $\Leftrightarrow$$ p = 3\cdot l$

Vamos exercitar um bocado.

  1. Um triângulo equilátero tem uma circunferência inscrita, cujo raio mede $7,0 cm$. Pede-se determinar o raio da circunferência circunscrita, a altura do triângulo e a medida do lado. Calcule também a área do triângulo.

$ r = a = {1\over2}\cdot{R}$ $\Leftrightarrow$$ 7 = {R\over2}$

$R = {7,0}\cdot{2} = 14,0 cm$

$h = a + R$

$h = 7,0 + 14,0 = 21,0 cm$

$h = {{{l}\sqrt{3}}\over{2}}$

$21,0 = {{{l}\sqrt{3}}\over{2}}$$\Leftrightarrow$${(21,0)}\cdot{2} = {l}\sqrt{3}$

${{(42,0)}\over\sqrt{3}} = l $ $\Leftrightarrow$${{{(42,0)}\cdot\sqrt{3}}\over\sqrt{3}} = l$

$l = {{{(42,0)}\cdot\sqrt{3}}\over{3}} = {{(14,0)}\cdot\sqrt{3}} cm$

$S_{3} = {{b\cdot h}\over2}$

$b = l = {(14,0)\cdot\sqrt{3}}$

$h = 21.0 cm$

$S_{3}= {{{(14,0)\cdot\sqrt{3}}\cdot{(21,0)}}\over2}$

$S_{3} = {(147,0)}\sqrt{3} cm$

2. Uma circunferência de raio $R = 30,0 cm$ é circunscrita a um triângulo equilátero. Pede-se determinar o raio da circunferência inscrita, a altura e o lado do triângulo, além de sua área.

$R = 30,0 cm$

$a = {R\over2}$

$a ={{(30,0)}\over{2}} = 15,0 cm$

$r = a = 15,0 cm$

$h = R + a$ $\Leftrightarrow$ $ h = 30,0 + 15,0 = 45,0 cm$

$h = {{{l}\cdot\sqrt{3}}\over{2}}$

$(45,0) = {{{l}\sqrt{3}}\over{2}}$$\Leftrightarrow$${{{(45,0)}\cdot{2}}\over\sqrt{3}} = l$

${{{(90,0)}\sqrt{3}}\over\sqrt{3}} = i$$\Leftrightarrow$$ l = {{(90,0)\sqrt{3}}\over{3}}$$\Leftrightarrow$$l = (30,0)\sqrt{3} cm$

$S_{3}= {{b\cdot h}\over2}$

$S_{3}= {{(30,0)\sqrt{3}\cdot (45,0)}\over2}$

$S_{3}= {(15,0)\cdot(45,0)\sqrt{3}}$$\Leftrightarrow$ $S_{3}= (675,0)\sqrt{3} cm²$

3. Um triângulo equilátero tem o lado medindo $ l = 27,0 m$. Pede-se determinar o raio da circunferência circunscrita, o raio da circunferência inscrita, a altura e a área da figura.

$R = {{l\sqrt{3}}\over 3}$

Sendo $ l = 27,0 m$, ficamos com:

$R = {{(27,0)\sqrt{3}}\over{3}}$$\Leftrightarrow$$R = (9,0)\sqrt{3} m$

$r = a = {{l\sqrt{3}}\over6}$

$r = {{(27,0)\sqrt{3}}\over 6}$$\Leftrightarrow$$ r = {{(9,0)\sqrt{3}}\over 2} m$

$h = {{l\sqrt{3}}\over 2}$

$h = {{(27,0)\sqrt{3}}\over 2}$$\Leftrightarrow$$ h = (13,5)\sqrt{3} m$

$S_{3}= {{b\cdot h}\over2}$

$S_{3} = {{(27,0)\cdot(13,5)\sqrt{3}}\over 2}$

$S_{3} = 182,25\sqrt{3} m²$

4. Um proprietário de terras, deseja cercar uma área em forma de triângulo equilátero, com 5(cinco) fios de arame liso. Se um dos lados da área mede $l = 200,0 m$, quantos metros de fio ele irá gastar para completar a cerca?

Se $p = 3\cdot l$$\Leftrightarrow$$ p = 3\cdot{200,0} = 600,0 m$

Cada fio de arame consumirá $600,0 m$ do material. Se ele quer colocar 5(cinco) fios, irá gastar:

$P = 5\cdot p$ $\Leftrightarrow$$ P = 5\cdot{600,0} = 3000,0 m$

Chegou a sua vez. Mostre do que é capaz.

  1. Se um círculo de raio $r = 12,0 cm$ está inscrito em um triângulo equilátero, determine: a) o raio do círculo circunscrito; b) a altura do triângulo; c) o lado do triângulo; d) a área do triângulo.
  2. Um triângulo equilátero está inscrito em uma circunferência de raio $R = 25,0 cm$. Calcule o raio do círculo inscrito nesse triângulo, a altura do triângulo e o seu lado.
  3. Um triângulo equilátero tem altura de $h = 18,0 cm$. Quer-se saber quanto mede o raio da circunferência inscrita, o lado do triângulo e a sua área. É possível circunscrever um círculo perfeito a esse triângulo? Se for, qual é seu raio.
  4. O perímetro de um triângulo equilátero (soma dos lados) é $p = 54,0 cm$. Determine sua altura, o apótema, o raio da circunferência circunscrita e a área do triângulo.
  5. Um triângulo equilátero, justapõe-se a outro igual a ele, formando um losango. Sendo as diagonais desse losango de medidas $d = 12,0 cm$ e $D ={(8,0)\sqrt{3}}cm$, determine sua área, a medida dos lados, o raio da circunferência inscrita e o raio da circunferência circunscrita aos vértices mais distantes.
  6. Um homem possui no terreno de sua casa uma sobra onde pretende colocar cerca murada. A forma é de um triângulo equilátero e vai precisar de 24 unidades de tijolos de 25,0cm, para cada fileira de um lado. Se quer fazer o muro com 8 (oito) fileiras de tijolos, quantos tijolos irá precisar para completar a obra?
  7. Dois irmãos são sócios em 50% para cada um de um terreno em forma de triângulo equilátero. Eles querem construir suas casas e para isso precisam demarcar as parcelas que cabem a cada um. Visando proteger o terreno de intrusos, quando ali forem colocar o material para a construção, querem construir muros de todos os lados e também na divisória. Se o lado do terreno mede $l = 50,0 m$, quantos metros de muros terão que construir? Se o código de edificações em área residencial da prefeitura permite ocupar 40% da área, qual é a área máxima que cada um deles poderá ocupar com a sua moradia?
  8. A diagonal menor de um losango, divide a figura em dois triângulos equiláteros. Se $d = 15,0 m$, determine a área de cada triângulo e a área do losango. Determine a diagonal maior da figura resultante. Determine o raio da circunferência que poderá ser inscrita na figura completa.

No caso de haver dificuldades, não hesite. Peça ajuda por meio de qualquer um dos canais abaixo.

Curitiba, 30 de outubro de 2019

Décio Adams

[email protected]  

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732