Matemática – Aritmética – Cálculo Mental

Cálculo mental.

  Vamos treinar o cérebro?              

Houve um tempo em que os professores, depois de ensinar aos educandos o reconhecimento e escrita dos números em algarismos arábicos, lhes ensinavam as quatro operações fundamentais. Logo em seguida eram feitas sessões de Cálculo mental. Como se faz isso? Certamente haverá quem pergunte. Com certeza que a primeira forma de cálculo mental é a memorização da tabuada. Nesse processo se utilizam recursos de contar nos dedos, contar os elementos de vários conjuntos iguais e outras formas encontradas pela criatividade dos mestres. Lembro meu professor primário nos fazia, em um dia determinado, recitar a tabuada desde o ${{1}\cdot{1}}$ até o ${{10}\cdot{10}}$, durante a formatura e entrada para as aulas depois do recreio. Era multi-seriado e todos entravam na roda. Os menores iam aprendendo meio que na marra.          Uma vez consolidado minimamente o conhecimento da tabuada, pode-se iniciar alguma coisa de cálculo mental. Inicia-se por perguntar de modo salteado os produtos de dois números. A recitação da tabuada de modo sequencial, leva ao chamado decoreba. Isso serve num primeiro momento, mas depois começa a ficar fundamental lembrar como por exemplo:         Quanto é ${{3}\cdot{5} = …}$   e    ${{5}\cdot{4} = …}$         Assim sucessivamente. Por que é importante saber os produtos de números de um algarismo entre si? Imaginaram fazer a multiplicação de um número com três algarismos por um outro de um ou dois algarismos e ser obrigado a recorrer a uma folha de papel localizando ali os resultados das multiplicações parciais? Isso tornaria o processo algo bem demorado e complicado. Estou até ouvindo muita gente dizer: Já inventaram a calculadora há tempo. Não precisa mais disso. Se o objetivo for apenas saber o resultado, concordo.         

Eu sei que a calculadora dá o resultado bem depressa e correto, desde que sejam digitados os números e sinais de operações corretamente. Basta esbarrar em uma tecla errada e poderá ver estragada a operação, sendo preciso recomeçar.        

Não é só isso. Nosso cérebro é como um músculo. Quanto menos é usado, mais ele atrofia. Verdade. Quanto mais você exercita o raciocínio, mais habilidade adquire. Lembro que, aos 6/7 anos comecei a vida escolar e aprendi os números. Em um momento dessa época, minha mente associou uma espécie de “escada”, mas não reta. Talvez melhor uma cerca com os palanques espaçados de distâncias iguais. Mais tarde isso veio ser confirmado com a tal reta numérica, associada aos números naturais, depois inteiros, reais e por aí vai. O uso da memória é muito mais questão de treino do que de capacidade natural. Há quem seja naturalmente bem dotado, mas mesmo os demais, podem exercitar e alcançar um excelente desempenho.        

Como se pode fazer cálculos mentais? Temos que começar com os mais fáceis e aos poucos aumentar a complexidade. Vejamos como exemplo a soma de dois números:                               ${ 27 + 44}$         

O habitual é escrever um embaixo do outro e somar, mas para isso precisamos ter papel e lápis ou caneta. Mentalmente podemos fazer essa soma em partes. O número pode ser decomposto nas suas unidades e dezenas:              ${ 27 = 20 + 7}$                                                         ${44 = 40  + 4}$        

Somando as dezenas vamos ter:  ${20 + 40  = 60}$         Somando as unidades, temos:        ${7 + 4  = 11}$         Agora é juntar os dois: ${60 + 11 = 71}$     
     A vantagem é que isso, com o treino pode ser feito em um ou dois segundos. Muito menos tempo do que você gastaria até localizar a calculadora em seu celular, abri-la no computador e digitar os números. De quebra ainda ganha maior desenvoltura de raciocínio, até mesmo a admiração dos outros, embora esse não deva ser o principal motivo.  Aos poucos, você pode fazer essas operações em escala mais avançada. Separa os números em suas unidades, dezenas, centenas, milhares e assim por diante. Na prática é o que fazemos no papel, apenas usamos a memória para guardar as partes que vamos somando e juntamos tudo no final.        

Vejamos um caso de multiplicação:                               ${{37} \cdot{8} = ?}$       

  O número${37}$ pode ser decomposto em ${30 + 7}$   O ${{30}\cdot{8} = 240}$ (${3\cdot{8}}$, acrescido de um zero).      

   O ${{7}\cdot{8}  = 56}$.

Agora basta somar ${240 + 56 = 296}$.        

Comece com casos simples e aos poucos, quando a confiança crescer, aumente a dificuldade das operações. Ninguém se torna um campeão de velocidade de um momento para outro. É preciso muito treino. Se você quer alcançar mais desenvoltura em matemática e mesmo em outras áreas, comece por treinar cálculos mentais. Podem ser feitos inclusive durante a malhação dos músculos. Os neurônios do raciocínio são independentes dos que comandam a musculatura corporal.        

Só se pode fazer somas e multiplicações dessa maneira? Não. Todas as operações podem ser feitas, pelo menos até certo grau de complexidade, apenas com o uso da memória e raciocínio, sem gastar nem lápis, caneta ou papel. Essas contas te ajudam a conferir ou mesmo saber de imediato o troco que a dar ou receber no momento do pagamento ou recebimento de um determinado valor, de certa mercadoria ou serviço.        

Você só vai saber a diferença se puser essas ideias em prática. Sem isso, nada acontece e o cérebro fica preguiçoso. Isso mesmo. Eu lanço o desafio a quem estiver disposto a tentar. Só depende de você. Eu não posso exercitar a mente em seu lugar, assim como ninguém pode “malhar” no lugar de outro. Isso não é terceirizável. Estou hoje com 70 anos e ainda faço muitos cálculos mentalmente. Não é por me faltar o recurso de uma calculadora, mas pelo simples prazer de exercitar minha mente. 

Vejamos mais uns exemplos e depois deixarei algumas proposições para que você comece exercitando sua capacidade de raciocínio e memória.   Façamos a seguinte operação: 257 x 11. Se fossemos fazer no papel usando lápis ou caneta, iríamos escrever o número 257 duas vezes uma abaixo da outra, com o deslocamento das unidades para a ordem das dezenas, das dezenas para a ordem das centenas e as centenas para a ordem dos milhares. Começando da direita para esquerda teríamos: ${7 + 0 = 7}$, depois ${5 + 7 = 12}$. Como ainda temos as centenas ficará uma centena reservada e teremos ${1 + 2 + 5 =8}$ e por último ${0 + 2 = 2}$. Isso nos dará como resultado o número ${2827}$. Também poderíamos fazer a soma ${2570 + 257 = 2827}$ que resulta no mesmo.  

Que tal obter o resultado de ${364\div { 14}}$!? Teremos na primeira parte ${36 \div{14} = 2}$. Ao multiplicar ${14\cdot2 = 28}$. De ${28}$ para ${36}$ restam ${8}$. Acrescentando o último algarismo ${4}$ ao resto teremos ${84\div{14} = 7}$ e ${14\cdot{7} =84}$, restando agora zero. Isto quer dizer que a divisão tem como resultado o número ${27}$. Podemos escrever ${364\div{14} = 27}$.  

Pior que esse hábito vicia! (Pelo menos para mim sempre foi assim). Vamos tentar mais uma agora?!  ${3458 + 753}$ Decompondo os números em suas ordens e adicionando os algarismos de mesma ordem fica:

${8 + 3 = 11}$  – uma unidade simples e uma dezena.

${50 + 50 = 100}$ – são dez dezenas ou uma centena

${400 + 700 = 1100}$ – hum milhar e uma centena ${3000 + 0 = 3000}$ – três milhares. 

Somando as partes teremos: ${3000 + 1100 + 100 + 11 = 4211}$

Você pode fazer esse mesmo procedimento no papel, mas, na ausência desse recurso, a memória pode ajudar muito. O treinamento transforma seu cérebro em um “processador” de alta velocidade.  Lembro do tempo em que lecionava física e matemática. Costumava fazer mentalmente o cálculo mais depressa do que alguns alunos que pegavam suas calculadoras e digitavam a operação. Enquanto eles retiravam a máquina do bolso ou da pasta eu já sabia do resultado. Isso lhes causava admiração, mas poderiam ter atingido a mesma rapidez, bastando que tivessem exercitado. 

Apenas para estimular você leitor, vou sugerir algumas operações para serem feitas sem usar de material para e escrever. Começaremos bem de leve e aos poucos você irá se auto-propondo outros exercícios mais complexos. Talvez seja conveniente depois fazer o cálculo no papel ou mesmo na calculadora para conferir se acertou. 

Efetue mentalmente os seguintes cálculos.

a)${47 + 53 = ?}$ b)${85 + 42 = ?}$ c)${142 + 84 = ?}$ d)${318 + 126 = ?}$ e)${{36}\cdot {13} = ?}$ f)${{27}\cdot {15} = ?}$ g)${{58}\cdot{9} = ?}$ h)${{225}\div{15} =?}$ i)${{559}\div{13} = ?}$ j)${{848}\div{8} = ?}$ k)${2743 – 929 = ?}$ l)${5628 – 1543 = ?}$ m)${10439 – 2743 = ?}$        

 Se tiver dúvidas, por obséquio me pergunte. Se eu não souber responder de imediato, podemos dialogar e discutir a questão. Estou sempre à disposição para fazer uso do raciocínio.    Curitiba, 06 de outubro de 2019  

Décio Adams

[email protected]  

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular: (41) 99805-0732