Na última vez que falamos desse assunto, vimos duas funções do tipo denominado função afim e deixamos alguns exercícios. Mas o assunto não ficou esgotado. Há mais coisas a saber sobre isso. Do mesmo modo que as funções lineares, também essas podem ter coeficiente angular negativo, isto é, apresentar-se na forma gráfica, inclinadas ao contrário dos dois exemplos vistos. Vejamos o primeiro.
Vamos determinar o conjunto verdade de algumas inequações do segundo grau, fazendo o estudo de sua variação de sinais em relação às raízes.
a) $\color{blue}{ -5x^2 + 25x + 70 \lt 0 }$
Vamos começar por identificar os coeficientes numéricos, comparando com a forma geral. Temos que $ a = -5 $, $ b = 25 $ e $ c = 70 $.
Para facilitar os cálculos, iremos dividir todos os termos por $-5$, simplificando e teremos \[\frac{-5x^2}{-5} + \frac{25x}{-5} + \frac{70}{-5} \lt 0\] \[x – 5x – 14 \lt 0\] Agora os coeficientes passam a ser $ a = 1$, $b = -5$ e $c = -14$. É o momento de determinar o discriminante \[\bbox[yellow,5px,border:2px red solid]{\color{maroon}{\Delta = b^2 – 4\cdot a \cdot c}} \] \[\Delta = {(-5)^2 – 4\cdot 1\cdot (-14)}\] \[\Delta = 25 + 56 \] \[\Delta = 81\] O discriminante é positivo e portanto teremos duas raízes reais e diferentes que tornarão a expressão igual a zero. Calculando as raízes \[\bbox[lime,5px,border:2px solid red]{\color{maroon}{ x = {{-b\pm\sqrt \Delta}\over{2a}}}} \] \[ x = {{-(-5)\pm\sqrt{81}}\over {2\cdot 1}} \] \[x= {{5\pm 9}\over 2}\] \[x’ = {{5 + 9}\over 2} = {14\over 2} = 7\] \[ x” = {{5 – 9}\over 2} = {-4\over 2} = -2\] Temos pois para valores que anulam a expressão em $x$ os números $-2 $ e $7$. Vejamos como fica o comportamento na Reta Real.
Vimos que para valores externos das raízes, isto é, nesse caso para $x \lt -2$ ou $x \gt 7$ a expressão terá o mesmo sinal do coeficiente $a$ na inequação na forma original, sem simplificação. Vimos acima que $a = -5$ ou seja $ a \lt 0$, o que nos leva à conclusão de que o sinal será negativo para esses valores. Já para os valores compreendidos entre $ -2 $ e $7$, a expressão terá o sinal contrário de $a$, portanto positivo. Assim deduzimos que o conjunto verdade dessa inequação é dado por: \[\bbox[silver, 5px,border:2px solid blue]{\color{green}{ V = \{ x \in R | x \lt -2 \vee x \gt 7\}}} \]
b)$\color{blue}{ 3x^2 + 15x -72 \ge 0}$
Identificamos os coeficientes $ a = 3$, $b = 15$ e $c = -72$. Observando esses valores, percebemos que é possível simplificar a expressão, dividindo todos os termos por $3$, o que nos dá \[\frac{3x^2}{3} +\frac{15x}{3} – \frac{-72}{3} \] \[ x^2 + 5x – 24 \ge 0\] Temos agora os novos coeficientes $ a= 1$, $b = 5 $ e $c = -24$. Vamos determinar o discriminante. \[\bbox[yellow,5px,border:2px red solid]{\color{maroon}{\Delta = b^2 – 4\cdot a \cdot c}} \] \[ \Delta = 5^2 – 4\cdot 1\cdot {-24} \] \[\Delta = 25 + 96 \] \[\Delta = 121\] Temos novamente $\Delta \gt 0$ e em consequência duas raízes reais e diferentes.
As raízes $-8$ e $ 3$ anulam a expressão, enquanto os valores externos tornam a expressão positiva, por ter no mesmo sinal de $a$. Os valores internos tornarão a expressão negativa, que é o sinal contrário de $a$. Como a inequação é $\ge 0$, o conjunto verdade será também dado por:
\[\bbox[silver,5px,border: 2px solid blue]{\color{green}{V=\{ x \in R| x\le -8 \vee x \ge 3\}}} \]
c)$\color{blue} {x^2 -13x + 42 \le 0}$
Os coeficientes numéricos são $a=1$, $b= -13$ e $c = 42$. Notamos que agora não há simplificação a ser feita, pois o coeficiente $a =1$ e a expressão está na sua forma mais simples. Vejamos o discriminante:\[\bbox[yellow,5px,border:2px red solid]{\color{maroon}{\Delta = b^2 – 4\cdot a \cdot c}} \] \[\Delta=(-13)^2 – 4\cdot 1\cdot 42 = 169 – 168 = 1\] Temos então que $\Delta \gt 0$ e novamente as raízes são reais e diferentes. \[\bbox[lime,5px,border:2px solid red]{\color{maroon}{ x = {{-b\pm\sqrt \Delta}\over{2a}}}} \] \[x={{-(-13\pm\sqrt{1}}\over{2\cdot 1}}\] \[x = {{13\pm 1}\over 2}\] \[x’= {{13 + 1}\over2} = {14\over 2} = 7\] \[x”={{13 – 1}\over 2} = {12\over 2} = 6 \] Lançando os valores $6$ e $7$ na Reta Real, teremos:
Para valores de $x$ a esquerda de $6$ ou a direita de $7$, a expressão será positiva, isto é, o mesmo sinal de $a$, que é positivo. Para valores internos do intervalo $6$ e $7$, a expressão será negativa, o sinal contrário de $a$. Assim sendo, a desigualdade da inequação é $\le$, o conjunto verdade será formado pelos números entre $6$ e $7$, inclusive.
Notamos que é possível simplificar a expressão, pois todos os coeficientes são múltiplos de $3$. Então \[\frac{3x^2}{3} – \frac{18x}{3} + \frac{72}{3} \] \[ x^2 – 6x + 24 \gt 0\]
Agora os nossos coeficientes são $a = 1$, $b = -6$ e $c = 24$. Vamos ao discriminante.
\[\bbox[yellow,5px,border:2px red solid]{\color{maroon}{\Delta = b^2 – 4\cdot a \cdot c}} \] \[ \Delta = {(-6)^2}\cdot 1\cdot {24} = 36 – 96 = -60\] Consequentemente constatamos que $\Delta \lt 0$, o que nos leva a conclusão de que nenhum número real tornará a expressão igual a zero. Como fica a inequação? Não temos ponto de referência para dizer que a expressão será positiva ou negativa para esse ou aquele valor. Vamos escolher três valores, sendo um negativo, o próprio zero e um positivo, substituindo e verificando o resultado. Sejam esses números $-3$, $0$ e $5$.
Fica evidenciado que para qualquer número real colocado no lugar de $x$ nessa inequação, o resultado é uma sentença verdadeira. Podemos concluir que o conjunto verdade é então o próprio conjunto dos números reais.
\[\bbox[silver,5px,border:2px solid blue]{\color{green}{ V = R}}\]
Se a mesma inequação tivesse o sinal de desigualdade $\lt $ no lugar de $\gt$, essas sentenças todas seriam falsas e portanto o conjunto verdade da inequação seria um conjunto vazio. Assim
\[3x^2 – 18x + 72 \lt 0\] \[\bbox[silver,5px,border:2px solid blue]{\color{green}{ V = \emptyset}}\] O mesmo aconteceria se tivéssemos os sinais de desigualdade $\ge$ ou $\le$, uma vez que teríamos a conjunção alternativa $\vee$, que tornaria as sentenças igualmente verdadeiras. É interessante notar que nestes casos o sinal da expressão é sempre igual ao sinal de $a$. Se $a\lt 0$, a expressão será sempre negativa, para qualquer número $x \in R$. Se $a \gt 0$, a expressão será positiva para qualquer valor de $x \in R$.
Agora é a sua vez de praticar. Analise os sinais das inequações e determine o conjunto verdade em cada caso.
a) $\color{green}{x^2 – 17x + 70 \le 0}$
b) $\color{green}{2x^2 + 4x – 48 \ge 0}$
c) $\color{green}{ x^2 – 5x – 36 \gt 0} $
d)$\color{green}{ 3x^2 – 108 \lt 0}$
e) $\color{green}{5x^2 – 35x \lt 0}$
f)$\color{green}{ 4x^2 – 12x + 44 \gt 0}$
g) $\color{green}{5x^2 + 110 \ge 3x^2 + 14x} $
h)$\color{green}{ 6x^2 + 54 \le 0} $
i) $\color{green}{4x -9 \gt x^2 }$
j) $\color{green}{x^2 – 19x + 88 \lt 0}$
l) $\color{green}{ 7x^2 + 28x \gt 0}$
m) $\color{green}{{\frac{2}{3}}x^2 -\frac{3}{5} \le 0} $
Obs.: Se tiver dúvida sobre a resolução de algum desses exercícios, faça contato comigo. Estes eu não vou resolver logo em seguida. Legal? Procure se virar nos trinta, meu!
Curitiba, 10 de junho de 2016. Revisto e adaptado em 08 de outubro de 2019.
Achou engraçado o nome?! Pois é, apesar do nome é um tipo de equação do 4º Grau, porém incompleta. Vejamos. Uma equação do 4º Grau, completa fica assim em sua forma geral.
Grande, não é?! Essas equações são resolvidas por um método diferente e apenas para adiantar, elas podem ter até quatro raízes reais. Mas ainda não é o momento de estudarmos coisas desse nível.
Então o que é essa tal de equação bi-quadrada? Eu disse no começo que ela é uma equação incompleta do 4º Grau. Sua forma geral pode ser apresentada assim:
$\bbox[silver,5px,border:2px solid aqua]{ax^4 + bx^2 + c = 0} $
Ela não tem os termos onde a variável x aparece com expoente ímpar
Isso mesmo. Até o presente momento, vimos só as equações do segundo grau, ditas completas, isto é, contendo coeficientes numéricos diferentes de zero em todos os termos, na forma geral.
$$\color{NavyBlue}{ ax² + bx + c = 0 }$$
Mas há as equações do segundo grau que têm um dos coeficientes igual a zero (0), com exceção do a, pois nesse caso deixaria de ser do segundo grau, passando a ser uma equação do primeiro grau. Temos, pois, a possibilidade de uma equação com os coeficientes b ou c iguais a zero (0). Elas ficam com a forma: