043.2 – Matemática, álgebra – Produtos notáveis. Produto da soma de dois números pela sua diferença.

– Produto da soma de dois números pela sua diferença

Sejam os números representados pelas letras b. A soma será (a + b) e a diferença será (a – b). Vamos multiplicar o binômio soma pelo binômio diferença.

${\underbrace{(a + b)} }\cdot {\underbrace{(a – b)}} $

${a}{a} + {a}{(-b)} + {b}{a} + {b}{(-b)} $

${ a^2 – ab + ab – b^2}$

$ {a^2 – b^2}$

Admitamos que sejam dados para $a$ e $b$ os valores:

${ a = 7}$

${ b = 3}$

Substituindo na multiplicação, temos:

${\underbrace{(7 + 3)}}\cdot{\underbrace{(7 – 3)}}$

${\underbrace{10 \cdot 4} = 40}$

Substituindo na diferença entre os quadrados:

${a^2 – b^2}$

${7^2 – 3^2}$

${\underbrace{49 – 9} =  40}$

NOTA: Percebemos que o resultado é exatamente igual, não importando se usamos a substituição dos valores das variáveis (letras) na multiplicação e efetuamos ou se usamos a diferença entre os quadrados.

Notamos que os dois termos semelhantes, são simétricos e por isso sua soma é igual a zero, isto é, se anulam. O resultado é um binômio diferença entre os quadrados dos dois números. 

“O produto da soma de dois números pela sua diferença, é igual à diferença entre seus quadrados”.

Poderíamos também dizer: O produto da soma pela diferença de dois números é igual ao quadrado do primeiro menos o quadrado do segundo termo”. 

Vamos exercitar um pouco.

a) $ {\underbrace{(mn + n)}}\cdot{\underbrace{(mn – n)}} $

$ {{(mn)}^2 – n^2 }$

${ m^{2}n^{2} – n^2 }$

b) $\underbrace {(7 – 3x)}\cdot{\underbrace {(7 + 3x)}} $

$ {{7}^2 – {(3x)}^2 }$

${ 49 – 9x^2 }$

c) $\underbrace {(4x + 3z)}\cdot{\underbrace{(4x – 3z)}} $

${(4x)}^2 – {(3z)}^2 $

${ 16x^2 – 9z^2 }$

d) $ \underbrace{( 1 + ab)}\cdot{\underbrace{( 1 – ab)}} $

$ {1^2 -{(ab)}^2 }$

${ 1 – a^{2}b^{2} }$

Resolva os produtos das somas pelas respectivas diferenças entre dois números, aplicando a regra.

a)${(2a + 3b)}{(2a – 3b)}= ?$

b)${(mn – 5)} {(mn + 5)}= ?$

c)${(3ax + 2by)}{(3ax – 2by)}= ?$

d)${(mx + ny)}{(mx – ny)}= ?$

e)${(7 – 5b)}{(7 + 5b)}= ?$

f)${(6az + 3by)}{(6az – 3by)}= ?$

g)${(3bp + 5br)}{(3bp – 5br)}= ?$

h)${(5qp – 7rp)}{(5qp + 7rp)}= ?$

Curitiba,  09 de junho de 2018.

Décio Adams

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/adamsdecio

@AdamsDcio

Telefone: (41) 3019-4760

Celulares: (41) 99805-0732

01.064 – Matemática, Álgebra. Inequações 2º Grau (continuação)

Pensou que acabou?

  • Ainda tem mais, bem mais. No post anterior nós vimos o caso das inequações em que existem dois valores que anulam a sentença da inequação. Mas existem aquelas em que temos duas raízes iguais, os que têm duas raízes simétricas, não têm raiz uma vez que recai num radical de índice par com radicando negativo.
  • Um passo de cada vez. Seja a inequação $\bbox[5px,border:2px solid maroon]{\mathbf{\color{Blue}{ x^2 -6x + 9 \lt 0}}} $.

Continue lendo “01.064 – Matemática, Álgebra. Inequações 2º Grau (continuação)”

01.063 – Matemática, Álgebra. Inequações do 2º Grau.

Inequações do 2º Grau.

Agora complicou!

Bem, já sabemos o que é uma inequação, não é? Por que complicou?

  • É que agora as que antes eram equações, agora são inequações e o conjunto verdade é um pouco mais difícil de determinar, mesmo aplicando a $\color{Green}{ f \acute { o } rmula}$ $\color{Green}{de}$ $\color{Green}{ Bhaskara}$, pois os sinais variam dependendo das condições que a inequação apresenta.
  • A forma geral é semelhante àquela que vimos para as equações, apenas em lugar de uma igualdade, temos uma desigualdade, onde novamente iremos usar os símbolos $\color{Blue}{ \lt} $, $\color{Blue}{\gt}$, $\color{Blue}{\le}$, $\color{Blue}{\ge}$, principalmente, pelo menos no primeiro momento. Talvez você me pergunte, por que vamos estudar esse assunto? Isso é importante mesmo? Vou responder que é muito, mas muito importante mesmo. Só para adiantar alguma coisa, digo que chegará o momento de estudar as funções e estas serão representadas graficamente, num plano cartesiano, formando retas, parábolas, hipérboles, senoides, cossenoides e outras mais. Nesse momento o conhecimento do estudo dos sinais será muito importante e é o que iremos aprender aqui.

Continue lendo “01.063 – Matemática, Álgebra. Inequações do 2º Grau.”

01.042 – Matemática – Álgebra, multiplicação de polinômios (exercícios resolvidos)

Exercitar é o caminho da aprendizagem.

Vamos começar por resolver os exercícios que ficaram no último post, sobre esse assunto.

  1. Efetuar a multiplicação dos termos algébricos a seguir.

a) $\color{Sepia}{({7\over 5}{bx})}{({5\over 3}{cx^2})}$

Vamos agrupar os coeficientes e as partes literais, para facilitar a operação.

$({7\over 5})\cdot({5\over3})\cdot {(bx)}\cdot {(cx^2)}$

Entre as frações coeficientes, temos fatores comuns entre numerador e denominador, o que permite simplificar. As partes literais, tem os expoentes da mesma letra somados na multiplicação.

${7\over \not{5}}\cdot{\not{5}\over 3}{bcx^{(1 +2)}} $

$$\color{NavyBlue}{{7\over 3}{bcx^3}}$$

b) $\color{Sepia}{{(2ay)}{(5ay)}}$

Agrupando os fatores

${2\cdot 5}\cdot{a\cdot a}\cdot{y\cdot y}$

$ {10\cdot {a^{(1 + 1)}}\cdot {y^{(1+1)}}}$

$$\color{NavyBlue}{10a^2y^2}$$

c) $\color{Sepia}{{(6 pr)}{({2\over3}{qr})}}$

Obs.: Qualquer número inteiro pode ser escrito na forma de uma fração, com o número por numerador e denominador igual a unidade. É o que iremos fazer neste exercício, para entender melhor a multiplicação dos coeficientes numéricos. Com a prática isso se torna dispensável.

$({6\over 1})\cdot({2\over 3})\cdot{(pr)}\cdot{(qr)}$

O numerador da primeira fração é divisível pelo denominador da segunda. Vamos simplificar, eliminando o denominador.

$({\not{6}\over 1})\cdot({2\over \not{3}}\cdot pr\cdot qr$

$ {(2\cdot 2)}\cdot pq\cdot r^{(1 + 1)}$

$$\color{NavyBlue} {4pqr^2}$$

d) $\color{Sepia}{{(3 i)}{(5ij)}}$

${3\cdot 5}\cdot{i\cdot i}\cdot {j}$

${15\cdot{i^{(1 + 1)}}\cdot {j}}$

$$\color{NavyBlue}{15i^2j}$$

e) $\color{Sepia}{{(4mn)}{(3n^3)}}$

${(4\cdot 3)}\cdot m\cdot{n^{(1+3)}}$

$$\color{NavyBlue}{12mn^4}$$

f) $\color{Sepia}{{(ax^2y)}{(bxy^3)}}$

${a\cdot b\cdot x^{(2 +1)}\cdot y^{(1 + 3)}}$

$$\color{NavyBlue}{abx^3y^4}$$

g)$\color{Sepia}{{(bx^3)}{(2cxy^2)}{(5bc^2)}}$

${b^{(1+1)}c^{(1+2)}x^{(3+1)}y^2}$

$$\color{NavyBlue}{b^2c^3x^4y^2}$$

h)$\color{Sepia}{{(3mn^2)}{(2m^3n)}{(-mn)}}$

${3\cdot 2\cdot (-1)\cdot m^{(1 + 3 + 1)}\cdot n^{(2 + 1 + 1)}}$

$\color{NavyBlue}{ -6m^5n^4}$$

2. Efetuar a multiplicação dos termos algébricos pelos polinômios a seguir.

a) $\color{BrickRed}{{(3ab)}\cdot {(2a + 3b – 5c)}}$

${(3ab)}\cdot{(2a)} +{(3ab)}\cdot{(3b)} + {(3ab)}\cdot{(-5c)}$

${(3\cdot 2)\cdot a^{(1 + 1)}\cdot b} +{3\cdot 3\cdot ab^{(1+1)}} + {3\cdot{(-5)}\cdot abc}$

$$\color{NavyBlue} {6a^2b + 9ab^2 – 15abc}$$

b) $\color{BrickRed}{{(mx^2)}\cdot {(mx + n{x^2}y + mxy)}}$

${(mx^2)}\cdot{(mx)} +{(mx^2)}\cdot{(nx^{2} y)} + {(mx^2)}\cdot{(mxy)}$

${m^{(1 + 1)}{x^{(2 +1)}} +{mnx^{(2+2)} y} + {m^{(1+1)}x^{(2+1)}} y}$

$$\color{NavyBlue}{m^2x^3 + mnx^{4}y +m^{2}x^{3}y}$$

c) $\color{Sepia}{{(5u^2v)}{(2uv + 4u – 5v + u^2v^3)}}$

$ 5u^2v\cdot 2uv + 5u^2v\cdot 4u + 5u^2v\cdot{(-5v)} +5u^2v\cdot u^2v^3 $

$5\cdot 2\cdot u^2v\cdot uv +5\cdot 4\cdot u^2v\cdot u + 5\cdot{(-5)}u^2v\cdot v + 5\cdot u^2v\cdot u^2 v^3 $

$$\color{NavyBlue}{10u^3 v^2 + 20u^3v -25u^2v^2 + 5u^4v^4}$$

d) $\color{Sepia}{({2\over 3}{axy^3}){(6xy – 3ay^2 + 9a{x^2}y)}}$

$({2\over 3}{axy^3})\cdot{(6xy)} + ({2\over3}{axy^3})\cdot {(-3ay^2)} + ({2\over 3}{axy^3})\cdot{(9ax^{2}y)}$

${2\over 3}\cdot{6}\cdot{(axy^3)}\cdot{xy} + {2\over 3}\cdot {(-3)}\cdot {axy^3} \cdot{ay^2} + {2\over 3}\cdot 9\cdot{axy^3}\cdot{ax^{2}y} $

${4ax^{(1+1)}y^{(3+1)}} -2a^{(1+1)}xy^{(3+2)} + 6a^{(1 + 1)}x^{(1+2)}y^{(3 + 1)}$

$$\color{NavyBlue}{ 4ax^{2}y^{4} – 2a^{2}xy^{5} + 6a^{2}x^{3}y^{4}}$$

e)$\color{Sepia}{{(3px^2)}{(5px + 3pq – 4qx^3)}}$

${(3px^2)}{(5px)} + {(3px^2)}{(3pq)} + {(3px^2)}{(-4qx^3)}$

${(3\cdot 5\cdot p^{(1 + 1)}\cdot x^{(2 + 1)}} + {3\cdot 3\cdot p^{(1 + 1)}\cdot q \cdot x^2} + {3\cdot {(-4)}\cdot p\cdot q\cdot x^{(2 + 3)}}$

$$\color{NavyBlue}{{15p^2x^3 + 9p^2qx^2 – 12pqx^5}}$$

f)$\color{Sepia}{{(2mn^2 + 5mx – 3nx^3)}{(2mn)}}$

${(2mn^2\cdot 2mn)} + {(5mx\cdot 2mn)} + {(-3nx\cdot 2mn)}$

$$\color{NavyBlue}{{4m^2n^3 + 10m^2nx – 6mn^2x}}$$

g)$\color{Sepia}{{(3xz^3)}{(2xy – 4xy^3z + 6x – x^2yz)}}$

${(3xz^3)\cdot (2xy)} + {(3xz^3)\cdot(-4xy^3z)} + {(3xz^3)\cdot (6x)} + {(3xz^3) \cdot(-x^2yz)}$

$$\color{NavyBlue}{{6x^2yz^3 – 12x^2y^3z^2 + 18x^2z^3 – 3x^3yz^4}}$$

h)$\color{Sepia}{{Ax^2)}{(Ax^3 + Bxy – Cyz^2)}}$

${(Ax^2)\cdot(Ax^3)} + {(Ax^2)\cdot(Bxy)} + {(Ax^2)\cdot(-Cyz^2)}$

${A^2 x^{(2 + 3)} + ABx^{(2 + 1)}y – AC x^2yz^2}$

$$\color{NavyBlue}{{A^2 x^5 + ABx^3y – ACx^2yz^2}}$$

3. Efetuar a multiplicação dos polinômios propostos a seguir.

a)$\color{Indigo}{{( a + ab)}{(abx + x)}}$

Agora chegou a hora de multiplicar todos os termos do primeiro polinômio, por todos os do segundo. No final reduzir os termos semelhantes, se os houver. Assim:

${a}\cdot {abx} + {a}\cdot{x} + {ab}\cdot {abx} + {ab}\cdot {x} $

${a^{(1+1)}bx + ax + a^{(1+1)}b^{(1+1)}x + abx }$

$$\color{Purple}{{ a^{2}bx + ax  + a^{2}b^{2}x + abx }}$$

b)$\color{Indigo}{{(pm – {p^2}n)}{(m^2 – pm^2 – pn)}}$

$ {pm}\cdot (m^2) + {pm}\cdot {(-pm^2)} + {pm}\cdot {-pn} + {(- p^2)}n\cdot {(m^2)} + {(-p^2)}n\cdot {(-pm^2)} + {(-p^2)}n\cdot{(-pn)} $

$ {pm^{(1 + 2)} – p^{(1 + 1)}m^{(1 +2)} – p^{(1 + 1)}mn – p^{2 }m^{2}n + p{(2+1)}m^{2}n + p^{(2+1)}n^{(1+1)}} $

$$\color{Purple}{pm^3 – p^2m^3 – p^2mn – p^2m^2n + p^3m^2n + p^3n^2}$$

Não há termos semelhantes, portanto a expressão final fica assim mesmo.

c)$\color{Indigo}{{(2x – 3 y)}{(5 + 2xy – 4 x^2 + 3xy^3)}}$

${2x}\cdot 5 + 2x\cdot {2xy} + 2x\cdot {(-4x^2)} + 2x\cdot {(3xy^3} + {(-3y)}\cdot 5 + {(-3y)}\cdot {(2xy)} +{(-3y)}\cdot {(3xy^3)} +{(-3y)}\cdot {(-4x^2)} $

$ 10x + 4x^{2}y – 8x^{(1+2)} +6x^{(1+1)}y^3 -15 y -6xy^{(1 +1)} – 9 xy^{(1 + 3)} +12x^{2}y $

$$\color{Purple}{{10x + 4x^{2} y – 8x^3 + 6x^{2}y^3 – 15 y – 6xy^2 – 9xy^4 + 12 x^{2}y}}$$

Não há termos semelhantes e o resultado fica assim mesmo.

d) $\color{Indigo}{{(3u + 5v)}{(6u^2 – 2 v + 7uv)}}$

$3u\cdot{(6u^2)} + 3u\cdot {(-2v)} + 3u\cdot{(7uv)} + 5v\cdot{(6u^{2})} + 5v\cdot{(- 2v)} + 5v\cdot{(7uv)} $

$$\color{Indigo}{18u^3 – 6uv + 21 u^{2}v + 30u^2v – 10v^2 + 35uv^{2}}$$

e)$\color{Indigo}{{(4m – 2n)}{(mn + m^2n – 3n^3)}}$

${(4m)\cdot(mn) + (4m)\cdot(m^2n) + (4m)\cdot(-3n^3) + (-2n)\cdot (mn) + (-2n)\cdot (m^2n) + (-2n)\cdot(-3n^3)}$

$\color{Purple}{{4m^2n + 4m^3n – 12mn^3 – 2mn^2 – 2m^2n^2 + 6n^4}}$$

Sem termos semelhantes, fica assim mesmo.

f)$\color{Indigo}{{(5 – 6x + 3xy + x^2y^3)}{(2 + 4xy)}}$

${(2\cdot 5) + 2\cdot (-6x) + 2\cdot(3xy) + 2\cdot(x^2y^3) + 4xy\cdot 5 + 4xy\cdot(-6x) + 4xy\cdot(3xy) + 4xy\cdot(x^2y^3)}$

$$\color{Indigo}{10 – 6x + 6xy + 2x^3y^4 + 20xy – 24x^2y + 12x^2y^2 +4x^3y^4}$$

Há dois pares determos semelhantes. Vamos agrupá-los e substituir pela soma algébrica dos mesmos.

${10 – 6x +(6xy + 20xy) + (2x^3y^4 + 4x^3y^4) + 24x^2y}$

${10 – 6x + 26xy + 6x^3y^4 + 24x^2y}$

Colocando os expoentes de x em ordem crescente ficamos com:

$$\color{Purple}{10 – 6x + 26xy + 24x^2y + 6x^3y^4}$$

g)$\color{Indigo}{{(4r^2 – 3pq)}{(5 + 3r – 2rq)}}$

${(4r^2)\cdot(5) + (4r^2)\cdot(3r) + (4r^2)\cdot((-2rq) +(-3pq)\cdot(5) + (-3pq)\cdot(3r) + (-3pq)\cdot(-2rq)}$

${20r^2 + 12r^3 – 8r^3q -15pq -9pqr +6pq^2r}$

Ordem crescente dos expoentes de r:

$$\color{Purple}{{-15pq  – 9pqr + 6pq^2r + 20r^2 + 12r^3 – 8r^3q}}$$

h)$\color{Indigo}{{(2ny – 3mx)}{(4nm + 2mx – 5mnx)}}$

${(2ny)\cdot(4nm) + (2ny)\cdot (2mx) + (2ny)\cdot(-5mnx) + (-3mx)\cdot(4nm) + (-3mx)\cdot(2mx) + (-3mx)\cdot(-5mnx)}$

$\color{Purple}{8n^2my + 4mnxy -10mn^2xy – 12m^2nx – 6m^2x^2 – 15m^2nx^2}$$

Não há termos semelhantes a reduzir.

Curitiba, 09 de abril de 2016. Republicado em 16 de dezembro de 2017.

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732

01.040 – Matemática – Álgebra. Multiplicação de termos e expressões algébricas.

Multiplicação de expressões algébricas

Resolução de exercícios do post anterior.

Adicionar e depois subtrair as expressões polinomiais, ordenando os resultados em ordem crescente dos expoentes da variável comum a todos os termos.

a) $$\color{Sepia}{5ay – 3 by^5 – 2 y^2 + a y^3} $$ $$\color{Sepia}{2ay^3 + 3by^5 – 2ay}$$

Adição: $$\color{Red}{({5ay – 2ay}) + ({-3by^5 + 3by^5}) – 2y^2 +({ay^3 + 2ay^3})}$$

$$\color{Red}{3ay – 2y^2 +3ay^3}$$

Já está em ordem crescente dos expoentes de y.

Subtração: $$\color{Sepia}{({5ay – 3by^5 – 2y^2 + ay^3}) – ({2ay^3 + 3by^5 – 2ay})}$$

Eliminando os parênteses, ficamos com:

$$\color{Red}{5ay – 3by^5 – 2y^2 + ay^3 – 2ay^3 – 3by^5 + 2ay}$$

Agrupando os termos semelhantes:

$$\color{Red}{({5ay + 2ay}) +({-3by^5 – 3by^5}) – 2y^2 +({ay^3 – 2ay^3})}$$

$$\color{Red}{7ay – 6by^5 -2by^2 – ay^3}$$

Ordenando os expoentes de y em ordem crescente.

$$\color{NavyBlue}{7ay -2by^2 -ay^3 -6by^5}$$

b) $$\color{Sepia}{7bx^2 – 3cx + 4 ax^4}$$

$$\color{Sepia}{3cx +4ax^4 – 2dx^3}$$

Adição: $$\color{Red}{({7bx^2 – 3cx + 4ax^4}) + ({+ 3cx + 4ax^4 – 2dx^3})} $$

$$\color{Red}{7bx^2 + {(- 3cx + 3cx )} + {(4ax^4 + 4ax^4}) – 2dx^3}$$

$$\color{Indigo}{7bx^2 + 8ax^4 – 2dx^3}$$

Em ordem crescente: $$\color{NavyBlue}{7bx^2 – 2dx^3 + 8ax^4}$$

Subtração: $$\color{Red}{({+ 7bx^2 – 3cx + 4ax^4}) – ({+ 3cx + 4ax^4 – 2dx^3})}$$

$$\color{Red}{+ 7bx^2 – 3cx + 4ax^4 – 3cx – 4ax^4 + 2dx^3}$$

$$\color{Red}{7bx^2 + ({ – 3cx – 3cx}) + ({4ax^4 – 4ax^4}) + 2dx^3}$$

$$\color{Indigo}{7bx^2 -6cx + 2dx^3}$$

Em ordem crescente: $$\color{NavyBlue}{-6cx + 7bx^2 + 2dx^3}$$

c) $$\color{Sepia}{mz^3 + 3nz – 5 z^2 }$$ $$\color{Sepia}{4mz^3 – 5z^2 + 4 nz}$$

Adição: $$\color{Red}{({mz^3 + 3nz – 5z^2}) + ({+4mz^3 – 5z^2 + 4nz})} $$

$$\color{Red}{({+ mz^3 + 4mz^3}) +({3nz + 4nz}) + ({- 5z^2 – 5z^2}) }$$

$$\color{NavyBlue}{5mz^3 + 7nz – 10z^2}$$ $$\color{NavyBlue}{7nz – 10z^2 + 5mz^3}$$

Subtração: $$\color{Red}{({mz^3 + 3nz – 5z^2}) – ({+ 4mz^3 – 5z^2 + 4nz})}$$

$$\color{Red}{mz^3 + 3nz – 5z^2 – 4mz^3 + 5z^2 – 4nz}$$

$$ \color{Indigo}{({mz^3 – 4 mz^3}) + ({ +3nz – 4nz}) + {( -5z^2 + 5z^2})}$$

$$\color{NavyBlue}{ – 3mz^3 – nz }$$ $$\color{NavyBlue}{ – nz – 3mz^3}$$

d)$$\color{Sepia}{13 x^4 + 9 x – 6x^3}$$

$$\color{Sepia}{8x + 3x^3 – 5x^4}$$

Adição: $$\color{Red}{({ +13x^4 + 9x – 6x^3}) +({+8x + 3x^3 – 5x^4})}$$

$$\color{Red}{ +13x^4 + 9x – 6x^3 + 8x + 3x^3 – 5x^4}$$

$$\color{Red}{({+ 13 x^4 – 5x^4}) + ({+9x + 8x}) + ({-6x^3 + 3x^3})}$$

$$\color{Indigo}{8 x^4+ 17x – 3x^3}$$

$$\color{NavyBlue}{ 17 x – 3x^3 + 8x^4 }$$

Subtração: $$\color{Red}{({13x^4 + 9x – 6x^3}) – ({+8x + 3x^3 – 5x^4})}$$

$$\color{Red}{13x^4 + 9x -6x^3 – 8x – 3x^3 + 5x^4}$$

$$\color{Red}{({13x^4 + 5x^4}) + ({+9x – 8x }) + ({-6x^3 – 3x^3})} $$

$$\color{Indigo}{18x^4 + x – 9x^3} $$

$$\color{NavyBlue}{ x – 9x^3 + 18x^4}$$

e)$$\color{Sepia}{x^2 y^3 + 2xy^2 – xy}$$

$$\color{Sepia}{4xy – 5x^2y^3 + xy^2 -4}$$

Adição: $$\color{Red}{x^2y^3 + 2xy^2 – xy} + {4xy – 5x^2y^3 +xy^2 – 4}$$

$$\color{Red}{x^2y^3 + 2xy^2 – xy + 4xy – 5x^2y^3 + xy^2 – 4} $$

$$\color{Indigo}{x^2y^3 – 5x^2y^3 + 2xy^2 + xy^2 – xy + 4xy -4}$$

$$\color{NavyBlue}{-4x^2y^3 + 3xy^2 + 3xy – 4}$$

Subtração: $$\color{Red}{x^2y^3 + 2xy^2 – xy} – {4xy – 5x^2y^3 +xy^2 – 4}$$

$$\color{Red}{x^2y^3 + 2xy^2 – xy – 4xy + 5x^2y^3 – xy^2 + 4}$$

$$\color{Indigo}{x^2y^3 + 5x^2y^3 + 2xy^2 -xy^2 -xy – 4xy + 4}$$

$$\color{NavyBlue}{6x^2y^3 + xy^2 – 5xy + 4}$$

f)$$\color{Sepia}{-mn^5 + 2m^3n – 6mn}$$ $$\color{Sepia}{5mn – mn^5 – 6m^3n}$$

Adição:

$$\color{Red}{-mn^5 + 2m^3n – 6mn} + {5mn – mn^5 – 6m^3n}$$

$$\color{Red}{-mn^5 + 2m^3n – 6mn + 5mn – mn^5 – 6m^3n}$$

$$\color{Indigo}{-mn^5 – mn^5 + 2m^3n – 6m^3n – 6 mn + 5mn}$$

$$\color{NavyBlue}{-2mn^5 – 4m^3n – mn}$$

Subtração:

$$\color{Red}{-mn^5 + 2m^3n – 6mn} – {5mn – mn^5 – 6m^3n}$$

$$\color{Red}{-mn^5 + 2m^3n – 6mn -5mn + mn^5 + 6m^3n}$$

$$\color{Indigo}{-mn^5 + mn^5 + 2m^3n – 6m^3n – 6mn – 5mn}$$

$$\color{NavyBlue}{ – 4m^3n – 11mn}$$

Multiplicação

Agora vamos ver como se faz para multiplicar. Começamos com a multiplicação de termos algébricos por números e por outros termos.

Exemplo. $$\color{Sepia} {5\cdot {2ax^2}}$$

Basta multiplicar o coeficiente pelo fator 5 e teremos: $${10ax^2}$$

Outro exemplo: $$\color{Sepia}{2x\cdot 3y}$$ Resulta: $$\color{Red}{2\cdot 3}\cdot{x\cdot y}$$ $$\color{NavyBlue}{6xy}$$

Se houver fatores literais de mesma espécie nos termos multiplicados, vamos aplicar a propriedade comutativa da multiplicação (lembrar das propriedades das quatro operações básicas).

$$\color{Sepia}{({5ax^3})\cdot({4ax})}$$

Colocamos os fatores da mesma espécie juntos.

$$\color{Red}{{5\cdot 4}\cdot {a\cdot a} \cdot {x^3\cdot x}}$$ $$\color{Red}{20\cdot{a^{(1+1)}}\cdot{x^{(3 + 1)}}}$$ $$\color{NavyBlue}{20{a^2}{x^4}}$$

Multiplicamos os coeficientes numéricos e as letras tem seus expoentes somados, para resultar o termo final.

E se a multiplicação for de um termo por um polinômio?

Neste caso aplicamos a propriedade distributiva  da multiplicação em relação à adição e subtração. Isto quer dizer que multiplicamos cada termo do polinômio pelo termo que está multiplicando. Para terminar, aplicamos os procedimentos vistos para os termos algébricos.

$$\color{Sepia}{2xy}\cdot {( 3x + 4y)}$$

$$\color{Sepia}{{2xy}\cdot{3x} + {2xy}\cdot {4y}}$$

Efetuando as operações teremos: $$\color{NavyBlue}{6{x^2}y + 8x{y^2}}$$

Outro exemplo.

$$\color{Sepia}{ax^3}\cdot{(2a + 3bx – 5x)}$$

$$\color{Sepia}{{ax^3}\cdot{2a} +{ax^3}\cdot{3bx} + {ax^3}\cdot{(-5x)}}$$

$$\color{Sepia}{2{a^2}{x^3} + 3ab{x^4} -{ 5a}{x^4}} $$

Exercitar é preciso

Efetue as multiplicações de termos e expressões algébricas listadas abaixo.

a) $\color{Indigo}{4a^3} \cdot{2ab^3}$

b) $\color{Indigo}{5x^3y}\cdot{2xy^4}$

c) $\color{Indigo}{3mn^2}\cdot{(2m^2 – 5m^3n^2 + m^3n^2)}$

d) $\color{Indigo}{2x^2z^3}\cdot{(xz^4 + x^3y^2 – 3x^2z^2)}$

e) $\color{Indigo}{abx^3}\cdot{(a^2bx^2 – 3a^3bx + ax^3)}$

Curitiba, 30 de março de 2016. Republicado em 13 de dezembro de 2017.

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732