067.7 – Logaritmos naturais ou neperianos; logaritmos decimais

Logaritmos

Logaritmos neperianos. 

São também denominados logaritmos naturais e se originaram dos trabalhos desenvolvidos e publicados por John Neper (Napier). Mais tarde a base desses logaritmos teve seu valor determinado por Euler, sendo usada largamente em diferentes áreas da atividade humana. Essa base é simbolizada pela letra:

${ e ≅ 2,71828183}$

Na prática usamos apenas a parte inteira e as duas primeiras casas decimais.

${ e ≅ 2,71}$

Continue lendo “067.7 – Logaritmos naturais ou neperianos; logaritmos decimais”

067.1 – logaritmos decimais ou comuns

Logaritmos decimais ou comuns

No estudo das operações com potências, vemos que o produto de potências com mesma base, é resolvido pela adição dos seus expoentes, conservando-se a base. Assim:

${{(3^2)\cdot(3^5)} = {3^{2 + 5}} = 3^7}$

${{(x^3)\cdot(x^2)\cdot(x^1)} = {x^{3 + 2 + 1}} = x^6}$

Os logarítmos são um assunto ligado à potenciação e surgiram no início do século XVII, com os estudos de John Neper e a ajuda de Henry Briggs, depois da publicação do trabalho elaborado por Neper.

Vejamos: ${{a^x = b} <=> log_a{b} = x}$

Na primeira expressão, $a$ é a base, $x$ é o expoente e $b$ é a potência. Na forma logarítmica $a$ também é a base, $b$ é o logaritmando e $x$ é o logaritmo. Assim podemos definir:

O logaritmo de um número b(logaritmando) em uma base é o expoente (x) ao qual devemos elevar a base para obter o número.”

É condição essencial que:  $a > 0$, $a ≠ 1 $ e $ b > 0 $

Continue lendo “067.1 – logaritmos decimais ou comuns”