01.045 – Matemática, Álgebra. Produtos notáveis – Exercícios de fixação.

Exercícios de produtos notáveis.

  1. Usando a regra do quadrado da soma de dois números, obtenha os trinômios quadrados perfeitos que resultam das expressões a seguir. a)${(uv + z)}^2 $  b)$ {(5m + r)}^2 $ c)$ {(7 + 2p)}^2$ d)${(a + 6b)}^2$ e)${(10x^{2 }+ y^{2})}^2$ f)${(mp^{3} + nr^{2})}^2$
  2. Faça o mesmo usando a regra do quadrado da diferença entre dois números, com as expressões abaixo. a)${(5a – 2b)}^2$ b)$ {(a^{2}i – b^{3}j)}^2$ c)$ {(2vx – 3uy)}^2$ d)$ {(4 q^{3} – 6p^{2})}^{2} $ e)${(12 – 3 a^{3})}^2$ f)$ {(15 – 3x)}^2$ g)$ {(7x – 8y)}^2 $
  3. Usando a regra do produto da soma de dois números pela sua diferença, obtenha os binômios resultantes das multiplicações abaixo. a)${(7 + 2x)}{(7 – 2x)}$ b)${(5 – 3y)}{(5 + 3y)}$ c)$ {(ab^{2} + b)}{(ab^{2} – b)}$ d)${(xy + xz)}{(xy – xz)}$ e)$ {(4m – 3n)}{(4m + 3n)}$ f)$ {(7x^{3} + 2y^{2})}{(7x^{3} – 2y^{2})}$
  4. Use agora a regra do cubo da soma de dois números para obter os polinômios de quatro termos resultantes das expressões abaixo. a)${2a + 5b)}^3$ b)${(7 +2j)}^3$ c)$ {(x + 3yz)}^3$ d)$ {(4l + 5m)}^3$ e)${(ma + nb)}^3 $ f)${(11 + 4r)}^3 $
  5.  Vamos fazer o mesmo com a regra do cubo da diferença. a)${(4m – 2)}^3$ b)${(3x – 5y)}^3$ c)${(9 – 5a)}^3$  d)${(5 – 4x)}^3 $ e)${(10 – 5c)}^3 $ f)${(3ab – x)}^3$ g)${(pq^{2} – rq)}^3$
  6. Chegou o momento de usar as regras mais avançadas. Multiplique os quadrados das somas pelas diferenças dos mesmos números, usando a regra vista no post anterior. a)${(ax + by)}^{2}\cdot {(ax – by)} $ b)$ {(5 + 3x)}^{2}\cdot{(5 – 3x)} $ c)$ {(4n + m^{2})}^{2}\cdot{(4n – m)} $ d)${(5a + 3b)}^{2}\cdot{(5a – 3b)} $ e)${(7x + 2y)}^{2}\cdot{7x -2y)} $ f)${(10 + 3v)}^{2}\cdot{(10 – 3v)}$ g)${(px + qy)}^{2}\cdot{(px – qy)} $
  7. Agora vamos multiplicar o quadrado das diferenças, pelas somas dos dois números, conforme a regra vista. a)${(3x – 2y)}^{2}\cdot{(3x + 2y)} $ b)${(5a – bx)}^{2}\cdot{(5a + bx)}$ c)${(1 – 5x)}^{2}\cdot{(1 + 5x)}$ d)$ {(6t – 4s)}^{2}\cdot{(6t+ 4s)}$ e)${(8l – z)}^{2}\cdot{(8l +z)} $ f)${(4n – 5m)}^{2}\cdot{(4n +5m)}$ g)${(r – pq)}^{2}\cdot{(r + pq)} $

Para sanar as dúvidas, vamos verificar se esses polinômios estão realmente corretos e isso podemos fazer, substituindo as letras por valores. Se efetuarmos as operações, seguindo os dois caminhos, os resultados devem ser obrigatoriamente iguais, do contrário há algo errado no polinômio, ou então a regra é furada. Vamos tirar essa dúvida.

Escolhendo dois números, que iremos substituir por y, podemos verificar as regras uma por uma. Vamos atribuir o valor 7 à letra  e o  valor 3 à letra y.

Agora vamos tomar os produtos notáveis, na ordem em que os estudamos.

Quadrado da soma:

$$\color{Sepia}{{ (x + y) }^2 }$$

$\color{Blue}{ x^2 + 2xy + y^2 }$

Vamos substituir as letras y, pelos valores 7 e 3, efetuando os cálculos.

${( 7 + 3)}^2$

${(10)}^2 $

Que resulta no número $\color{Red}{100}$.

${(7)^2 + 2\cdot 7\cdot 3 + (3)^2 }$

$ { 49 + 42 + 9}$

$ {91 + 9} $

$$\color{Red}{100}$$

Também resulta no número 100. Isso nos mostra que a regra do quadrado da soma está correta, pois tanto a substituição direta no binômio soma e sua elevação ao quadrado, quanto a substituição no trinômio quadrado perfeito, resultaram no mesmo valor, ou seja 100.

E o quadrado da diferença?

$$\color{Sepia}{ (x – y)}^2$$

$\color{Blue}{x^2 – 2xy + y^2}$

Substituindo as letras pelos seus respectivos valores teremos:

${(7 – 3)}^2$

$ {4}^2 $

$\color{Red}{ 16} $

${(7)^2 – 2\cdot 7\cdot 3 + (3)^2} $

$ {49 – 42 + 9} $

${ 7 + 9} $

$\color{Red}{ 16} $

Novamente, os resultados deram iguais. O que nos demonstra que a regra do quadrado da soma também é válida.

Produto da soma, pela diferença.

$$\color{Sepia}{{(x + y )}{( x- y)}}$$

$\color{Blue}{ x^2 – y^2} $

Fazendo a substituição teremos:

${ (7 + 3)} {(7 – 3)} $

$\color{Red}{{10 \cdot 4} = {40}}$

${7^2 – 3^2} $

${49 – 9}$

$\color{Red}{40}$

Mas não é que deu igual! A regra do produto da soma pela diferença, também está verificada. Interessante não é?! A matemática é uma maravilha e não morde. Basta prestar atenção e começar a entender desde a base. O resto é mera consequência.

Mas ainda falta verificar mais coisas. Como fica o cubo da soma?

$$\color{Sepia}{{(x + y)}^3}$$

$\color{Blue}{x^3 +3 x^{2}y + 3xy^{2}+ y^3} $

${(7 +3)}^3 $

${(10)}^3$

$\color{Red}{ 1000} $

${7^3 + 3\cdot{7}^2\cdot 3 + 3\cdot 7\cdot {3}^2 + 3^3} $

$ {343 + 3\cdot 49\cdot 3 + 3\cdot 7\cdot {3}^2 + 3^3}$

${343 + 441 + 189 + 27 } $

$\color{Red}{1000} $

Maravilha. O cubo da soma também está corretíssimo. Isso é bom, não acha?

O cubo da diferença, parece que nem precisa verificar, mas vamos tirar a prova assim mesmo.

$$\color{Sepia}{{(x – y )}^3}$$

$\color{Blue} {x^3 – 3x^{2}y + 3xy^{2} – y^3}$

Substituindo as letras pelos números, temos;

${( 7 – 3)}^3 $

$ {4}^3 $

$\color{Reed} {64}$

${7^3 – 3\cdot {7}^2\cdot 3 + 3\cdot 7\cdot{3}^2 – 3^3 }$

${343 – 3\cdot 49\cdot 3 + 3\cdot 7\cdot 9 – 27}$

${ 343 – 441 + 189 – 27} $

${532 – 468} $

$\color{Red}{64}$

Uau! Também deu certo. Não vejo a hora de verificar o resto.

Produto do quadrado da soma, pela diferença.

$$\color{Sepia}{{(x + y)}^2\cdot{(x – y)}}$$

$\color{Blue}{x^3 +x^{2}y – xy^{2} – y^3} $

Vamos substituir os números agora.

${( 7 + 3)}^2\cdot {(7 -3)} $

${(10)}^{2}\cdot 4 $

$ {100\cdot 4}$

$\color{Red}{ 400} $

${(7^3 + 7^2\cdot 3 – 7\cdot 3^2 – 3^3} $

$ {343 + 49\cdot 3 – 7\cdot 9 – 27}$

${ 343 + 147 – 63 – 27} $

$ {490 – 90} $

$\color{Red}{400} $

Não resta dúvida. Deu certo mais uma vez.

Produto do quadrado da diferença, pela soma dos dois números.

$$\color{Sepia}{{(x – y)}^{2}\cdot{(x + y)}}$$

$\cpçpr{Blue}{x^3 – x^{2} y – xy^{2} + y^3 } $

Na substituição ficamos com:

${( 7 – 3)}^2\cdot{(7 + 3)} $

$ {4}^2\cdot {(10)} $

$ 16\cdot 10 $

$\color{Red}{160} $

${7^3 – 7^{2}\cdot 3 – 7\cdot{3}^2 + 3^3} $

${ 343 – 147 – 63 + 27}$

$ {370 – 210} $

$\color{Red}{160}$

Fechou de vez. Todas as regras vistas estão corretas e podem ser usadas sem problema. Não resta a menor dúvida.

Eu estou imaginando que alguém, neste momento, depois de ver a resolução de todas as regras, irá dizer: Mas por que vou usar tantos cálculos, se a forma direta é muito mais rápida e simples?

Sou levado a concordar com você. Realmente o cálculo feito com os números, sem todas as potências, sinais, multiplicações e tudo mais é bem mais curto e igualmente correto. Mas, no futuro, continuando os estudos, surgirão momentos, como por exemplo na fatoração, quando estas regras se tornarão extremamente úteis. Posso garantir, sem a menor dúvida, que você irá me agradecer, se conseguir lembrar ou encontrar um lugar qualquer em que isso esteja anotado para poder usar e facilitar sua vida, especialmente quem for continuar seus estudos em alguma área que utiliza matemática como ferramenta constante. Se você não for continuar nesse sentido, não fique triste, pois o conhecimento não ocupa espaço, o raciocínio se desenvolve e é aplicável em inúmeras situações, até mesmo onde você menos espera. Ao aprender estas coisas não estará gastando seu cérebro, que é como os músculos. Quanto mais usa, melhor eles funcionam. Sua memória e mesmo seu cérebro irão lhe agradecer muito pelos exercícios aos quais você os submete, pois isso os mantém ágeis e funcionando à perfeição. A memória é uma coisa natural de nosso cérebro. Ele registra e armazena tudo que vivemos em cada momento, do nascimento até o momento da morte. Pouco lhe importa se você quer ou não lembrar dos fatos. Eles ficam registrados. Por isso, quanto mais você a usar para armazenar coisas úteis, melhor para você mesmo, para sua saúde física e mental. Tudo isso pode até ajudar a retardar o eventual aparecimento de doenças como Alzheimer, Parkinson. Não que isso seja um remédio para evitar esses males, mas que ajuda e muito, disso não resta dúvida.

Curitiba, 16 de abril de 2016. Republicado em 17 de dezembro de 2017.

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/adamsdecio

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732

01.042 – Matemática – Álgebra, multiplicação de polinômios (exercícios resolvidos)

Exercitar é o caminho da aprendizagem.

Vamos começar por resolver os exercícios que ficaram no último post, sobre esse assunto.

  1. Efetuar a multiplicação dos termos algébricos a seguir.

a) $\color{Sepia}{({7\over 5}{bx})}{({5\over 3}{cx^2})}$

Vamos agrupar os coeficientes e as partes literais, para facilitar a operação.

$({7\over 5})\cdot({5\over3})\cdot {(bx)}\cdot {(cx^2)}$

Entre as frações coeficientes, temos fatores comuns entre numerador e denominador, o que permite simplificar. As partes literais, tem os expoentes da mesma letra somados na multiplicação.

${7\over \not{5}}\cdot{\not{5}\over 3}{bcx^{(1 +2)}} $

$$\color{NavyBlue}{{7\over 3}{bcx^3}}$$

b) $\color{Sepia}{{(2ay)}{(5ay)}}$

Agrupando os fatores

${2\cdot 5}\cdot{a\cdot a}\cdot{y\cdot y}$

$ {10\cdot {a^{(1 + 1)}}\cdot {y^{(1+1)}}}$

$$\color{NavyBlue}{10a^2y^2}$$

c) $\color{Sepia}{{(6 pr)}{({2\over3}{qr})}}$

Obs.: Qualquer número inteiro pode ser escrito na forma de uma fração, com o número por numerador e denominador igual a unidade. É o que iremos fazer neste exercício, para entender melhor a multiplicação dos coeficientes numéricos. Com a prática isso se torna dispensável.

$({6\over 1})\cdot({2\over 3})\cdot{(pr)}\cdot{(qr)}$

O numerador da primeira fração é divisível pelo denominador da segunda. Vamos simplificar, eliminando o denominador.

$({\not{6}\over 1})\cdot({2\over \not{3}}\cdot pr\cdot qr$

$ {(2\cdot 2)}\cdot pq\cdot r^{(1 + 1)}$

$$\color{NavyBlue} {4pqr^2}$$

d) $\color{Sepia}{{(3 i)}{(5ij)}}$

${3\cdot 5}\cdot{i\cdot i}\cdot {j}$

${15\cdot{i^{(1 + 1)}}\cdot {j}}$

$$\color{NavyBlue}{15i^2j}$$

e) $\color{Sepia}{{(4mn)}{(3n^3)}}$

${(4\cdot 3)}\cdot m\cdot{n^{(1+3)}}$

$$\color{NavyBlue}{12mn^4}$$

f) $\color{Sepia}{{(ax^2y)}{(bxy^3)}}$

${a\cdot b\cdot x^{(2 +1)}\cdot y^{(1 + 3)}}$

$$\color{NavyBlue}{abx^3y^4}$$

g)$\color{Sepia}{{(bx^3)}{(2cxy^2)}{(5bc^2)}}$

${b^{(1+1)}c^{(1+2)}x^{(3+1)}y^2}$

$$\color{NavyBlue}{b^2c^3x^4y^2}$$

h)$\color{Sepia}{{(3mn^2)}{(2m^3n)}{(-mn)}}$

${3\cdot 2\cdot (-1)\cdot m^{(1 + 3 + 1)}\cdot n^{(2 + 1 + 1)}}$

$\color{NavyBlue}{ -6m^5n^4}$$

2. Efetuar a multiplicação dos termos algébricos pelos polinômios a seguir.

a) $\color{BrickRed}{{(3ab)}\cdot {(2a + 3b – 5c)}}$

${(3ab)}\cdot{(2a)} +{(3ab)}\cdot{(3b)} + {(3ab)}\cdot{(-5c)}$

${(3\cdot 2)\cdot a^{(1 + 1)}\cdot b} +{3\cdot 3\cdot ab^{(1+1)}} + {3\cdot{(-5)}\cdot abc}$

$$\color{NavyBlue} {6a^2b + 9ab^2 – 15abc}$$

b) $\color{BrickRed}{{(mx^2)}\cdot {(mx + n{x^2}y + mxy)}}$

${(mx^2)}\cdot{(mx)} +{(mx^2)}\cdot{(nx^{2} y)} + {(mx^2)}\cdot{(mxy)}$

${m^{(1 + 1)}{x^{(2 +1)}} +{mnx^{(2+2)} y} + {m^{(1+1)}x^{(2+1)}} y}$

$$\color{NavyBlue}{m^2x^3 + mnx^{4}y +m^{2}x^{3}y}$$

c) $\color{Sepia}{{(5u^2v)}{(2uv + 4u – 5v + u^2v^3)}}$

$ 5u^2v\cdot 2uv + 5u^2v\cdot 4u + 5u^2v\cdot{(-5v)} +5u^2v\cdot u^2v^3 $

$5\cdot 2\cdot u^2v\cdot uv +5\cdot 4\cdot u^2v\cdot u + 5\cdot{(-5)}u^2v\cdot v + 5\cdot u^2v\cdot u^2 v^3 $

$$\color{NavyBlue}{10u^3 v^2 + 20u^3v -25u^2v^2 + 5u^4v^4}$$

d) $\color{Sepia}{({2\over 3}{axy^3}){(6xy – 3ay^2 + 9a{x^2}y)}}$

$({2\over 3}{axy^3})\cdot{(6xy)} + ({2\over3}{axy^3})\cdot {(-3ay^2)} + ({2\over 3}{axy^3})\cdot{(9ax^{2}y)}$

${2\over 3}\cdot{6}\cdot{(axy^3)}\cdot{xy} + {2\over 3}\cdot {(-3)}\cdot {axy^3} \cdot{ay^2} + {2\over 3}\cdot 9\cdot{axy^3}\cdot{ax^{2}y} $

${4ax^{(1+1)}y^{(3+1)}} -2a^{(1+1)}xy^{(3+2)} + 6a^{(1 + 1)}x^{(1+2)}y^{(3 + 1)}$

$$\color{NavyBlue}{ 4ax^{2}y^{4} – 2a^{2}xy^{5} + 6a^{2}x^{3}y^{4}}$$

e)$\color{Sepia}{{(3px^2)}{(5px + 3pq – 4qx^3)}}$

${(3px^2)}{(5px)} + {(3px^2)}{(3pq)} + {(3px^2)}{(-4qx^3)}$

${(3\cdot 5\cdot p^{(1 + 1)}\cdot x^{(2 + 1)}} + {3\cdot 3\cdot p^{(1 + 1)}\cdot q \cdot x^2} + {3\cdot {(-4)}\cdot p\cdot q\cdot x^{(2 + 3)}}$

$$\color{NavyBlue}{{15p^2x^3 + 9p^2qx^2 – 12pqx^5}}$$

f)$\color{Sepia}{{(2mn^2 + 5mx – 3nx^3)}{(2mn)}}$

${(2mn^2\cdot 2mn)} + {(5mx\cdot 2mn)} + {(-3nx\cdot 2mn)}$

$$\color{NavyBlue}{{4m^2n^3 + 10m^2nx – 6mn^2x}}$$

g)$\color{Sepia}{{(3xz^3)}{(2xy – 4xy^3z + 6x – x^2yz)}}$

${(3xz^3)\cdot (2xy)} + {(3xz^3)\cdot(-4xy^3z)} + {(3xz^3)\cdot (6x)} + {(3xz^3) \cdot(-x^2yz)}$

$$\color{NavyBlue}{{6x^2yz^3 – 12x^2y^3z^2 + 18x^2z^3 – 3x^3yz^4}}$$

h)$\color{Sepia}{{Ax^2)}{(Ax^3 + Bxy – Cyz^2)}}$

${(Ax^2)\cdot(Ax^3)} + {(Ax^2)\cdot(Bxy)} + {(Ax^2)\cdot(-Cyz^2)}$

${A^2 x^{(2 + 3)} + ABx^{(2 + 1)}y – AC x^2yz^2}$

$$\color{NavyBlue}{{A^2 x^5 + ABx^3y – ACx^2yz^2}}$$

3. Efetuar a multiplicação dos polinômios propostos a seguir.

a)$\color{Indigo}{{( a + ab)}{(abx + x)}}$

Agora chegou a hora de multiplicar todos os termos do primeiro polinômio, por todos os do segundo. No final reduzir os termos semelhantes, se os houver. Assim:

${a}\cdot {abx} + {a}\cdot{x} + {ab}\cdot {abx} + {ab}\cdot {x} $

${a^{(1+1)}bx + ax + a^{(1+1)}b^{(1+1)}x + abx }$

$$\color{Purple}{{ a^{2}bx + ax  + a^{2}b^{2}x + abx }}$$

b)$\color{Indigo}{{(pm – {p^2}n)}{(m^2 – pm^2 – pn)}}$

$ {pm}\cdot (m^2) + {pm}\cdot {(-pm^2)} + {pm}\cdot {-pn} + {(- p^2)}n\cdot {(m^2)} + {(-p^2)}n\cdot {(-pm^2)} + {(-p^2)}n\cdot{(-pn)} $

$ {pm^{(1 + 2)} – p^{(1 + 1)}m^{(1 +2)} – p^{(1 + 1)}mn – p^{2 }m^{2}n + p{(2+1)}m^{2}n + p^{(2+1)}n^{(1+1)}} $

$$\color{Purple}{pm^3 – p^2m^3 – p^2mn – p^2m^2n + p^3m^2n + p^3n^2}$$

Não há termos semelhantes, portanto a expressão final fica assim mesmo.

c)$\color{Indigo}{{(2x – 3 y)}{(5 + 2xy – 4 x^2 + 3xy^3)}}$

${2x}\cdot 5 + 2x\cdot {2xy} + 2x\cdot {(-4x^2)} + 2x\cdot {(3xy^3} + {(-3y)}\cdot 5 + {(-3y)}\cdot {(2xy)} +{(-3y)}\cdot {(3xy^3)} +{(-3y)}\cdot {(-4x^2)} $

$ 10x + 4x^{2}y – 8x^{(1+2)} +6x^{(1+1)}y^3 -15 y -6xy^{(1 +1)} – 9 xy^{(1 + 3)} +12x^{2}y $

$$\color{Purple}{{10x + 4x^{2} y – 8x^3 + 6x^{2}y^3 – 15 y – 6xy^2 – 9xy^4 + 12 x^{2}y}}$$

Não há termos semelhantes e o resultado fica assim mesmo.

d) $\color{Indigo}{{(3u + 5v)}{(6u^2 – 2 v + 7uv)}}$

$3u\cdot{(6u^2)} + 3u\cdot {(-2v)} + 3u\cdot{(7uv)} + 5v\cdot{(6u^{2})} + 5v\cdot{(- 2v)} + 5v\cdot{(7uv)} $

$$\color{Indigo}{18u^3 – 6uv + 21 u^{2}v + 30u^2v – 10v^2 + 35uv^{2}}$$

e)$\color{Indigo}{{(4m – 2n)}{(mn + m^2n – 3n^3)}}$

${(4m)\cdot(mn) + (4m)\cdot(m^2n) + (4m)\cdot(-3n^3) + (-2n)\cdot (mn) + (-2n)\cdot (m^2n) + (-2n)\cdot(-3n^3)}$

$\color{Purple}{{4m^2n + 4m^3n – 12mn^3 – 2mn^2 – 2m^2n^2 + 6n^4}}$$

Sem termos semelhantes, fica assim mesmo.

f)$\color{Indigo}{{(5 – 6x + 3xy + x^2y^3)}{(2 + 4xy)}}$

${(2\cdot 5) + 2\cdot (-6x) + 2\cdot(3xy) + 2\cdot(x^2y^3) + 4xy\cdot 5 + 4xy\cdot(-6x) + 4xy\cdot(3xy) + 4xy\cdot(x^2y^3)}$

$$\color{Indigo}{10 – 6x + 6xy + 2x^3y^4 + 20xy – 24x^2y + 12x^2y^2 +4x^3y^4}$$

Há dois pares determos semelhantes. Vamos agrupá-los e substituir pela soma algébrica dos mesmos.

${10 – 6x +(6xy + 20xy) + (2x^3y^4 + 4x^3y^4) + 24x^2y}$

${10 – 6x + 26xy + 6x^3y^4 + 24x^2y}$

Colocando os expoentes de x em ordem crescente ficamos com:

$$\color{Purple}{10 – 6x + 26xy + 24x^2y + 6x^3y^4}$$

g)$\color{Indigo}{{(4r^2 – 3pq)}{(5 + 3r – 2rq)}}$

${(4r^2)\cdot(5) + (4r^2)\cdot(3r) + (4r^2)\cdot((-2rq) +(-3pq)\cdot(5) + (-3pq)\cdot(3r) + (-3pq)\cdot(-2rq)}$

${20r^2 + 12r^3 – 8r^3q -15pq -9pqr +6pq^2r}$

Ordem crescente dos expoentes de r:

$$\color{Purple}{{-15pq  – 9pqr + 6pq^2r + 20r^2 + 12r^3 – 8r^3q}}$$

h)$\color{Indigo}{{(2ny – 3mx)}{(4nm + 2mx – 5mnx)}}$

${(2ny)\cdot(4nm) + (2ny)\cdot (2mx) + (2ny)\cdot(-5mnx) + (-3mx)\cdot(4nm) + (-3mx)\cdot(2mx) + (-3mx)\cdot(-5mnx)}$

$\color{Purple}{8n^2my + 4mnxy -10mn^2xy – 12m^2nx – 6m^2x^2 – 15m^2nx^2}$$

Não há termos semelhantes a reduzir.

Curitiba, 09 de abril de 2016. Republicado em 16 de dezembro de 2017.

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732

01.041- Matemática, álbgebra. Multiplicação de polinômios.

Multiplicando polinômios

No post anterior, vimos como se multiplica um termo algébrico por outro e também um termo por um polinômio. E se tivermos que multiplicar um polinômio por outro, como fica a questão? Seja por exemplo:

$$\color{Sepia}{{(mx^2 + my)}\cdot{(2x + 3xy – 5y)}}$$

Vamos multiplicar alternadamente o primeiro termo do primeiro polinômio por todos os termos do segundo, até terminar. O resultado será uma expressão com vários termos, entre os quais é possível haver termos semelhantes. Bastará fazer a redução e teremos o resultado procurado. Façamos em partes.

$$\color{Red}{{mx^2}\cdot({2x + 3xy – 5y})}$$

$$\color{Red}{(mx^2)\cdot (2x)} + {(mx^2)\cdot (3xy)} +{(mx^2)\cdot (-5y)}$$

$$\color{Red}{2\cdot m\cdot x^2\cdot x} + {3\cdot m\cdot x^2\cdot xy} +{-5\cdot m\cdot  x^2\cdot y}$$

$$\color{Red}{{2mx^3 + 3mx^3y – 5mx^2y}}$$

$$\color{Indigo}{{my\cdot 2x} +{my\cdot 3xy} + {my\cdot{-5y}}}$$

$$\color{NavyBlue}{2mxy + 3mxy^2 – 5my^2}$$

Escrevendo as duas partes juntas, verificaremos que não há termos semelhantes e assim ficaremos com uma expressão de seis termos no final.

$$\color{NavyBlue}{2mx^3 + 3mx^3y – 5mx^2y + 2mxy + 3mxy^2 – 5my^2}$$

Vamos a outro exemplo:

$$\color{Sepia}{{( 3x^2 + 2x)}\cdot{(2x^3 + x^2)}}$$

Na multiplicação do primeiro termo do primeiro polinômio, pelo segundo polinômio resulta:

$\color{Red}{{(3x^2)}\cdot{(2x^3 +x^2)}}$

$\color{Red}{{(3x^2)}{(2x^3)} + {(3x^2)}{(x^2)}}$

$\color{Red}{{6x^{(2 + 3)}} + 3x^{(2+2)}}$

$\color{Red}{6x^5 + 3x^4}$

A segunda parte fica:

$\color{Red}{{(2x)}\cdot{(2x^3 +x^2)}}$

$\color{Red}{{2x\cdot 2x^3} + (2x)\cdot ({x^2})} $

$\color{Red}{4x^{(1+3)} + 2x^{(1+2)}}$

$$\color{Indigo}{4x^4 + 2x^3}$$

Reunindo as duas partes teremos:

$\color{NavyBlue}{6x^5 + 3x^4 +4x^4 + 2x^3}$

Temos dois termos semelhantes:

$\color{Brown}{{6x^5 +{(3x^4 + 4x^4)} + 2x^3}}$

$$\color{Purple}{6x^5 + 7x^4 + 2x^3}$$

Podemos, para facilitar, fazer as multiplicações na mesma sequência, sem separar, subentendendo alguns passos, depois de dominarmos o processo. Ou seja, podemos fazer as multiplicações mentalmente e escrever apenas os resultados, de modo a diminuir o espaço ocupado no papel. Mas isso deve ser feito, depois de termos perfeito domínio de cada passo. Não significa que iremos omitir os passos, apenas os fazemos em sequência e depois escrevemos o resultado. Isso acontece na medida em que adquirimos desenvoltura com as diferentes operações.

Hora de exercitar.

  1. Efetuar a multiplicação dos termos algébricos a seguir.

a)$\color{Indigo}{({7\over 5}\cdot bx)\cdot{({5\over 3}\cdot cx^2})}$

b$\color{Indigo}{{(2ay)}{(5ay)}}$

c)$\color{Indigo}{{(6 pr)}{({2\over3}qr)}}$

d)$\color{Indigo}{{(3 i)}{(5ij)}}$

e)$\color{Indigo}{{(4mn)}{(3n^3)}}$

f)$\color{Indigo}{{(a{x^2}y)}{(bx{y^3})}}$

g)$\color{Indigo}{{(bx^3)}{(2cxy^2)}{(5bc^2)}}$

h)$\color{Indigo}{{(3mn^2)}{(2m^3n)}{(-mn)}}$

2. Efetuar a multiplicação dos termos algébricos pelos polinômios a seguir.

a) $\color{Sepia}{{(3ab)}\cdot {(2a + 3b – 5c)}}$

b) $\color{Sepia}{{(mx^2)}\cdot {(mx + nx^2}y + mxy)}$

c) $\color{Sepia}{{(5 u^2v)}{(2uv + 4u – 5v + {{u^2}v^3})}}$

d) $\color{Sepia}{{({2\over 3}{axy^3})}{(6xy – 3ay^2 + 9a{x^2}y)}}$

e)$\color{Sepia}{{(3px^2)}{(5px + 3pq – 4qx^3)}}$

f)$\color{Sepia}{{(2mn^2 + 5mx – 3nx^3)}{(2mn)}}$

g)$\color{Sepia}{{(3xz^3)}{(2xy – 4xy^3z + 6x – x^2yz)}}$

h)$\color{Sepia}{{Ax^2)}{(Ax^3 + Bxy – Cyz^2)}}$

3. Efetuar a multiplicação dos polinômios propostos a seguir.

a)$\color{Brown}{{( a + ab)}{(abx + x)}}$

b)$\color{Brown}{{(pm – {p^2}n)}{(m^2 – pm^2 – pn)}}$

c)$\color{Brown}{{(2x – 3 y)}{(5 + 2xy – 4 x^2 + 3xy^3)}}$

d)$\color{Brown}{{(3u + 5v)}{(6u^2 – 2 v + 7uv)}}$

e)$\color{Brown}{{(4m – 2n)}{(mn + m^2n – 3n^3)}}$

f)$\color{Brown}{{(5 – 6x + 3xy + x^2y^3)}{(2 + 4xy)}}$

g)$\color{Brown}{{(4r^2 – 3pq)}{(5 + 3r – 2rq)}}$

h)$\color{Brown}{{(2ny – 3mx)}{(4nm + 2mx – 5mnx)}}$

Curitiba, 31/março/2016. Republicado em 16 de dezembro de 2017.

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732

01.040 – Matemática – Álgebra. Multiplicação de termos e expressões algébricas.

Multiplicação de expressões algébricas

Resolução de exercícios do post anterior.

Adicionar e depois subtrair as expressões polinomiais, ordenando os resultados em ordem crescente dos expoentes da variável comum a todos os termos.

a) $$\color{Sepia}{5ay – 3 by^5 – 2 y^2 + a y^3} $$ $$\color{Sepia}{2ay^3 + 3by^5 – 2ay}$$

Adição: $$\color{Red}{({5ay – 2ay}) + ({-3by^5 + 3by^5}) – 2y^2 +({ay^3 + 2ay^3})}$$

$$\color{Red}{3ay – 2y^2 +3ay^3}$$

Já está em ordem crescente dos expoentes de y.

Subtração: $$\color{Sepia}{({5ay – 3by^5 – 2y^2 + ay^3}) – ({2ay^3 + 3by^5 – 2ay})}$$

Eliminando os parênteses, ficamos com:

$$\color{Red}{5ay – 3by^5 – 2y^2 + ay^3 – 2ay^3 – 3by^5 + 2ay}$$

Agrupando os termos semelhantes:

$$\color{Red}{({5ay + 2ay}) +({-3by^5 – 3by^5}) – 2y^2 +({ay^3 – 2ay^3})}$$

$$\color{Red}{7ay – 6by^5 -2by^2 – ay^3}$$

Ordenando os expoentes de y em ordem crescente.

$$\color{NavyBlue}{7ay -2by^2 -ay^3 -6by^5}$$

b) $$\color{Sepia}{7bx^2 – 3cx + 4 ax^4}$$

$$\color{Sepia}{3cx +4ax^4 – 2dx^3}$$

Adição: $$\color{Red}{({7bx^2 – 3cx + 4ax^4}) + ({+ 3cx + 4ax^4 – 2dx^3})} $$

$$\color{Red}{7bx^2 + {(- 3cx + 3cx )} + {(4ax^4 + 4ax^4}) – 2dx^3}$$

$$\color{Indigo}{7bx^2 + 8ax^4 – 2dx^3}$$

Em ordem crescente: $$\color{NavyBlue}{7bx^2 – 2dx^3 + 8ax^4}$$

Subtração: $$\color{Red}{({+ 7bx^2 – 3cx + 4ax^4}) – ({+ 3cx + 4ax^4 – 2dx^3})}$$

$$\color{Red}{+ 7bx^2 – 3cx + 4ax^4 – 3cx – 4ax^4 + 2dx^3}$$

$$\color{Red}{7bx^2 + ({ – 3cx – 3cx}) + ({4ax^4 – 4ax^4}) + 2dx^3}$$

$$\color{Indigo}{7bx^2 -6cx + 2dx^3}$$

Em ordem crescente: $$\color{NavyBlue}{-6cx + 7bx^2 + 2dx^3}$$

c) $$\color{Sepia}{mz^3 + 3nz – 5 z^2 }$$ $$\color{Sepia}{4mz^3 – 5z^2 + 4 nz}$$

Adição: $$\color{Red}{({mz^3 + 3nz – 5z^2}) + ({+4mz^3 – 5z^2 + 4nz})} $$

$$\color{Red}{({+ mz^3 + 4mz^3}) +({3nz + 4nz}) + ({- 5z^2 – 5z^2}) }$$

$$\color{NavyBlue}{5mz^3 + 7nz – 10z^2}$$ $$\color{NavyBlue}{7nz – 10z^2 + 5mz^3}$$

Subtração: $$\color{Red}{({mz^3 + 3nz – 5z^2}) – ({+ 4mz^3 – 5z^2 + 4nz})}$$

$$\color{Red}{mz^3 + 3nz – 5z^2 – 4mz^3 + 5z^2 – 4nz}$$

$$ \color{Indigo}{({mz^3 – 4 mz^3}) + ({ +3nz – 4nz}) + {( -5z^2 + 5z^2})}$$

$$\color{NavyBlue}{ – 3mz^3 – nz }$$ $$\color{NavyBlue}{ – nz – 3mz^3}$$

d)$$\color{Sepia}{13 x^4 + 9 x – 6x^3}$$

$$\color{Sepia}{8x + 3x^3 – 5x^4}$$

Adição: $$\color{Red}{({ +13x^4 + 9x – 6x^3}) +({+8x + 3x^3 – 5x^4})}$$

$$\color{Red}{ +13x^4 + 9x – 6x^3 + 8x + 3x^3 – 5x^4}$$

$$\color{Red}{({+ 13 x^4 – 5x^4}) + ({+9x + 8x}) + ({-6x^3 + 3x^3})}$$

$$\color{Indigo}{8 x^4+ 17x – 3x^3}$$

$$\color{NavyBlue}{ 17 x – 3x^3 + 8x^4 }$$

Subtração: $$\color{Red}{({13x^4 + 9x – 6x^3}) – ({+8x + 3x^3 – 5x^4})}$$

$$\color{Red}{13x^4 + 9x -6x^3 – 8x – 3x^3 + 5x^4}$$

$$\color{Red}{({13x^4 + 5x^4}) + ({+9x – 8x }) + ({-6x^3 – 3x^3})} $$

$$\color{Indigo}{18x^4 + x – 9x^3} $$

$$\color{NavyBlue}{ x – 9x^3 + 18x^4}$$

e)$$\color{Sepia}{x^2 y^3 + 2xy^2 – xy}$$

$$\color{Sepia}{4xy – 5x^2y^3 + xy^2 -4}$$

Adição: $$\color{Red}{x^2y^3 + 2xy^2 – xy} + {4xy – 5x^2y^3 +xy^2 – 4}$$

$$\color{Red}{x^2y^3 + 2xy^2 – xy + 4xy – 5x^2y^3 + xy^2 – 4} $$

$$\color{Indigo}{x^2y^3 – 5x^2y^3 + 2xy^2 + xy^2 – xy + 4xy -4}$$

$$\color{NavyBlue}{-4x^2y^3 + 3xy^2 + 3xy – 4}$$

Subtração: $$\color{Red}{x^2y^3 + 2xy^2 – xy} – {4xy – 5x^2y^3 +xy^2 – 4}$$

$$\color{Red}{x^2y^3 + 2xy^2 – xy – 4xy + 5x^2y^3 – xy^2 + 4}$$

$$\color{Indigo}{x^2y^3 + 5x^2y^3 + 2xy^2 -xy^2 -xy – 4xy + 4}$$

$$\color{NavyBlue}{6x^2y^3 + xy^2 – 5xy + 4}$$

f)$$\color{Sepia}{-mn^5 + 2m^3n – 6mn}$$ $$\color{Sepia}{5mn – mn^5 – 6m^3n}$$

Adição:

$$\color{Red}{-mn^5 + 2m^3n – 6mn} + {5mn – mn^5 – 6m^3n}$$

$$\color{Red}{-mn^5 + 2m^3n – 6mn + 5mn – mn^5 – 6m^3n}$$

$$\color{Indigo}{-mn^5 – mn^5 + 2m^3n – 6m^3n – 6 mn + 5mn}$$

$$\color{NavyBlue}{-2mn^5 – 4m^3n – mn}$$

Subtração:

$$\color{Red}{-mn^5 + 2m^3n – 6mn} – {5mn – mn^5 – 6m^3n}$$

$$\color{Red}{-mn^5 + 2m^3n – 6mn -5mn + mn^5 + 6m^3n}$$

$$\color{Indigo}{-mn^5 + mn^5 + 2m^3n – 6m^3n – 6mn – 5mn}$$

$$\color{NavyBlue}{ – 4m^3n – 11mn}$$

Multiplicação

Agora vamos ver como se faz para multiplicar. Começamos com a multiplicação de termos algébricos por números e por outros termos.

Exemplo. $$\color{Sepia} {5\cdot {2ax^2}}$$

Basta multiplicar o coeficiente pelo fator 5 e teremos: $${10ax^2}$$

Outro exemplo: $$\color{Sepia}{2x\cdot 3y}$$ Resulta: $$\color{Red}{2\cdot 3}\cdot{x\cdot y}$$ $$\color{NavyBlue}{6xy}$$

Se houver fatores literais de mesma espécie nos termos multiplicados, vamos aplicar a propriedade comutativa da multiplicação (lembrar das propriedades das quatro operações básicas).

$$\color{Sepia}{({5ax^3})\cdot({4ax})}$$

Colocamos os fatores da mesma espécie juntos.

$$\color{Red}{{5\cdot 4}\cdot {a\cdot a} \cdot {x^3\cdot x}}$$ $$\color{Red}{20\cdot{a^{(1+1)}}\cdot{x^{(3 + 1)}}}$$ $$\color{NavyBlue}{20{a^2}{x^4}}$$

Multiplicamos os coeficientes numéricos e as letras tem seus expoentes somados, para resultar o termo final.

E se a multiplicação for de um termo por um polinômio?

Neste caso aplicamos a propriedade distributiva  da multiplicação em relação à adição e subtração. Isto quer dizer que multiplicamos cada termo do polinômio pelo termo que está multiplicando. Para terminar, aplicamos os procedimentos vistos para os termos algébricos.

$$\color{Sepia}{2xy}\cdot {( 3x + 4y)}$$

$$\color{Sepia}{{2xy}\cdot{3x} + {2xy}\cdot {4y}}$$

Efetuando as operações teremos: $$\color{NavyBlue}{6{x^2}y + 8x{y^2}}$$

Outro exemplo.

$$\color{Sepia}{ax^3}\cdot{(2a + 3bx – 5x)}$$

$$\color{Sepia}{{ax^3}\cdot{2a} +{ax^3}\cdot{3bx} + {ax^3}\cdot{(-5x)}}$$

$$\color{Sepia}{2{a^2}{x^3} + 3ab{x^4} -{ 5a}{x^4}} $$

Exercitar é preciso

Efetue as multiplicações de termos e expressões algébricas listadas abaixo.

a) $\color{Indigo}{4a^3} \cdot{2ab^3}$

b) $\color{Indigo}{5x^3y}\cdot{2xy^4}$

c) $\color{Indigo}{3mn^2}\cdot{(2m^2 – 5m^3n^2 + m^3n^2)}$

d) $\color{Indigo}{2x^2z^3}\cdot{(xz^4 + x^3y^2 – 3x^2z^2)}$

e) $\color{Indigo}{abx^3}\cdot{(a^2bx^2 – 3a^3bx + ax^3)}$

Curitiba, 30 de março de 2016. Republicado em 13 de dezembro de 2017.

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732