046.2 – Matemática, álgebra. Exercícios de produtos notáveis. Quadrado da diferença de dois números.

Quadrado da diferença entre dois números.

Usando a regra do quadrado da diferença entre dois números, resolva as expressões abaixo.

a)${(5a – 2b)}^2$

b)$ {(a^{2}i – b^{3}j)}^2$

c)$ {(2vx – 3uy)}^2$

d)$ {(4 q^{3} – 6p^{2})}^{2}$

e)${(12 – 3 a^{3})}^2$

f)$ {(15 – 3x)}^2$

g)$ {(7x – 8y)}^2 $

Vamos à resolução.

a)$\underbrace{(5a – 2b)^2}$

$\underbrace {(5a)^2} +\overbrace{- 2\cdot {5a}\cdot{2b}} +\underbrace{(ab)^2 }$

$  25a^2 – 20ab + 4b^2 $

b)$\underbrace {(a^{2}i – b^{3}j)^2}$

$ \underbrace{ [(a^2)i]^2} -\overbrace{ 2\cdot{a^2}i\cdot{b^3}} + {(b^3)}^2$

$  a^{4}i^{2} – 2a^{2}b^{3}i + b^6 $

c)$\underbrace {(2vx – 3uy)^2}$

$ {(2vx)^2 – 2\cdot {(2vx)}\cdot{(3uy)} + {(3uy)}^2}$

$ 4v^{2}x^{2} – 12uvxy + 9u^{2}y^{2} $

d)$\underbrace {(4 q^{3} – 6p^{2})^2}$

$\underbrace{(4q^{3})^2} -\overbrace{ 2\cdot (4q^{3})\cdot(6p^{2})} +\underbrace{(6p^{2})^2}$

$  16q^6 – 48q^{3}p^{2} + 36p^{4} $

e)$\underbrace{(12 – 3 a^{3})^2}$

$ \underbrace{(12)^2} -\overbrace{ 2\cdot{12}\cdot{3a^3}} +\underbrace {(3a^{3})^2}$

$  144 – 72a^{3} + 9a^6 $

f)$\underbrace {(15 – 3x)^2}$

$ \underbrace  {(15)^2} -\overbrace{ 2\cdot {15}\cdot{(3x)}} +\underbrace {(3x)^2}$

$  225 – 90x + 9x^2 $

g)$\underbrace {(7x – 8y)^2}$

$\underbrace {(7x)^2} -\overbrace{ 2\cdot{7x}\cdot {8y}}+ \underbrace{(8y)^2}$

$ 49x^2 – 112xy + 64y^2$

Resolva você estes que vem a seguir.

h)${(3x – 5y)^2}$

i)${(5 – 8xy)^2}$

j)${(mn – 5n)^2}$

l)${(4j – 6n)^2}$

m)${(fg – 5h)^2}$

n) ${(10 – 7p)^2$

o) ${(12 – 9r)^2}$

Curitiba, 23 de junho de 2018

Décio Adams

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/adamsdecio

@AdamsDcio

Telefone: (41) 3019-4760

Celulares: (41) 99805-0732

Deixe uma resposta