01.046 – Matemática – Álgebra, Produtos notáveis. Exercícios resolvidos.

Exercícios de produtos notáveis.

  1. Usando a regra do quadrado da soma de dois números, obtenha os trinômios quadrados perfeitos que resultam das expressões a seguir. a)$\color{Orchid}{{(uv + z)}^2}$;  b)$\color{Orchid}{{(5m + r)}^2}$;  c)$\color{Orchid}{{(7 + 2p)}^2}$; d)$\color{Orchid}{{(a + 6b)}^2}$; e)$\color{Orchid}{{(10x^{2 }+ y^{2})}^2}$; f)$\color{Orchid}{{(mp^{3} + nr^{2})}^2}$.

Continue lendo “01.046 – Matemática – Álgebra, Produtos notáveis. Exercícios resolvidos.”

01.045 – Matemática, Álgebra. Produtos notáveis – Exercícios de fixação.

Exercícios de produtos notáveis.

  1. Usando a regra do quadrado da soma de dois números, obtenha os trinômios quadrados perfeitos que resultam das expressões a seguir. a)${(uv + z)}^2 $  b)$ {(5m + r)}^2 $ c)$ {(7 + 2p)}^2$ d)${(a + 6b)}^2$ e)${(10x^{2 }+ y^{2})}^2$ f)${(mp^{3} + nr^{2})}^2$
  2. Faça o mesmo usando a regra do quadrado da diferença entre dois números, com as expressões abaixo. a)${(5a – 2b)}^2$ b)$ {(a^{2}i – b^{3}j)}^2$ c)$ {(2vx – 3uy)}^2$ d)$ {(4 q^{3} – 6p^{2})}^{2} $ e)${(12 – 3 a^{3})}^2$ f)$ {(15 – 3x)}^2$ g)$ {(7x – 8y)}^2 $
  3. Usando a regra do produto da soma de dois números pela sua diferença, obtenha os binômios resultantes das multiplicações abaixo. a)${(7 + 2x)}{(7 – 2x)}$ b)${(5 – 3y)}{(5 + 3y)}$ c)$ {(ab^{2} + b)}{(ab^{2} – b)}$ d)${(xy + xz)}{(xy – xz)}$ e)$ {(4m – 3n)}{(4m + 3n)}$ f)$ {(7x^{3} + 2y^{2})}{(7x^{3} – 2y^{2})}$
  4. Use agora a regra do cubo da soma de dois números para obter os polinômios de quatro termos resultantes das expressões abaixo. a)${2a + 5b)}^3$ b)${(7 +2j)}^3$ c)$ {(x + 3yz)}^3$ d)$ {(4l + 5m)}^3$ e)${(ma + nb)}^3 $ f)${(11 + 4r)}^3 $
  5.  Vamos fazer o mesmo com a regra do cubo da diferença. a)${(4m – 2)}^3$ b)${(3x – 5y)}^3$ c)${(9 – 5a)}^3$  d)${(5 – 4x)}^3 $ e)${(10 – 5c)}^3 $ f)${(3ab – x)}^3$ g)${(pq^{2} – rq)}^3$
  6. Chegou o momento de usar as regras mais avançadas. Multiplique os quadrados das somas pelas diferenças dos mesmos números, usando a regra vista no post anterior. a)${(ax + by)}^{2}\cdot {(ax – by)} $ b)$ {(5 + 3x)}^{2}\cdot{(5 – 3x)} $ c)$ {(4n + m^{2})}^{2}\cdot{(4n – m)} $ d)${(5a + 3b)}^{2}\cdot{(5a – 3b)} $ e)${(7x + 2y)}^{2}\cdot{7x -2y)} $ f)${(10 + 3v)}^{2}\cdot{(10 – 3v)}$ g)${(px + qy)}^{2}\cdot{(px – qy)} $
  7. Agora vamos multiplicar o quadrado das diferenças, pelas somas dos dois números, conforme a regra vista. a)${(3x – 2y)}^{2}\cdot{(3x + 2y)} $ b)${(5a – bx)}^{2}\cdot{(5a + bx)}$ c)${(1 – 5x)}^{2}\cdot{(1 + 5x)}$ d)$ {(6t – 4s)}^{2}\cdot{(6t+ 4s)}$ e)${(8l – z)}^{2}\cdot{(8l +z)} $ f)${(4n – 5m)}^{2}\cdot{(4n +5m)}$ g)${(r – pq)}^{2}\cdot{(r + pq)} $

Para sanar as dúvidas, vamos verificar se esses polinômios estão realmente corretos e isso podemos fazer, substituindo as letras por valores. Se efetuarmos as operações, seguindo os dois caminhos, os resultados devem ser obrigatoriamente iguais, do contrário há algo errado no polinômio, ou então a regra é furada. Vamos tirar essa dúvida.

Escolhendo dois números, que iremos substituir por y, podemos verificar as regras uma por uma. Vamos atribuir o valor 7 à letra  e o  valor 3 à letra y.

Agora vamos tomar os produtos notáveis, na ordem em que os estudamos.

Quadrado da soma:

$$\color{Sepia}{{ (x + y) }^2 }$$

$\color{Blue}{ x^2 + 2xy + y^2 }$

Vamos substituir as letras y, pelos valores 7 e 3, efetuando os cálculos.

${( 7 + 3)}^2$

${(10)}^2 $

Que resulta no número $\color{Red}{100}$.

${(7)^2 + 2\cdot 7\cdot 3 + (3)^2 }$

$ { 49 + 42 + 9}$

$ {91 + 9} $

$$\color{Red}{100}$$

Também resulta no número 100. Isso nos mostra que a regra do quadrado da soma está correta, pois tanto a substituição direta no binômio soma e sua elevação ao quadrado, quanto a substituição no trinômio quadrado perfeito, resultaram no mesmo valor, ou seja 100.

E o quadrado da diferença?

$$\color{Sepia}{ (x – y)}^2$$

$\color{Blue}{x^2 – 2xy + y^2}$

Substituindo as letras pelos seus respectivos valores teremos:

${(7 – 3)}^2$

$ {4}^2 $

$\color{Red}{ 16} $

${(7)^2 – 2\cdot 7\cdot 3 + (3)^2} $

$ {49 – 42 + 9} $

${ 7 + 9} $

$\color{Red}{ 16} $

Novamente, os resultados deram iguais. O que nos demonstra que a regra do quadrado da soma também é válida.

Produto da soma, pela diferença.

$$\color{Sepia}{{(x + y )}{( x- y)}}$$

$\color{Blue}{ x^2 – y^2} $

Fazendo a substituição teremos:

${ (7 + 3)} {(7 – 3)} $

$\color{Red}{{10 \cdot 4} = {40}}$

${7^2 – 3^2} $

${49 – 9}$

$\color{Red}{40}$

Mas não é que deu igual! A regra do produto da soma pela diferença, também está verificada. Interessante não é?! A matemática é uma maravilha e não morde. Basta prestar atenção e começar a entender desde a base. O resto é mera consequência.

Mas ainda falta verificar mais coisas. Como fica o cubo da soma?

$$\color{Sepia}{{(x + y)}^3}$$

$\color{Blue}{x^3 +3 x^{2}y + 3xy^{2}+ y^3} $

${(7 +3)}^3 $

${(10)}^3$

$\color{Red}{ 1000} $

${7^3 + 3\cdot{7}^2\cdot 3 + 3\cdot 7\cdot {3}^2 + 3^3} $

$ {343 + 3\cdot 49\cdot 3 + 3\cdot 7\cdot {3}^2 + 3^3}$

${343 + 441 + 189 + 27 } $

$\color{Red}{1000} $

Maravilha. O cubo da soma também está corretíssimo. Isso é bom, não acha?

O cubo da diferença, parece que nem precisa verificar, mas vamos tirar a prova assim mesmo.

$$\color{Sepia}{{(x – y )}^3}$$

$\color{Blue} {x^3 – 3x^{2}y + 3xy^{2} – y^3}$

Substituindo as letras pelos números, temos;

${( 7 – 3)}^3 $

$ {4}^3 $

$\color{Reed} {64}$

${7^3 – 3\cdot {7}^2\cdot 3 + 3\cdot 7\cdot{3}^2 – 3^3 }$

${343 – 3\cdot 49\cdot 3 + 3\cdot 7\cdot 9 – 27}$

${ 343 – 441 + 189 – 27} $

${532 – 468} $

$\color{Red}{64}$

Uau! Também deu certo. Não vejo a hora de verificar o resto.

Produto do quadrado da soma, pela diferença.

$$\color{Sepia}{{(x + y)}^2\cdot{(x – y)}}$$

$\color{Blue}{x^3 +x^{2}y – xy^{2} – y^3} $

Vamos substituir os números agora.

${( 7 + 3)}^2\cdot {(7 -3)} $

${(10)}^{2}\cdot 4 $

$ {100\cdot 4}$

$\color{Red}{ 400} $

${(7^3 + 7^2\cdot 3 – 7\cdot 3^2 – 3^3} $

$ {343 + 49\cdot 3 – 7\cdot 9 – 27}$

${ 343 + 147 – 63 – 27} $

$ {490 – 90} $

$\color{Red}{400} $

Não resta dúvida. Deu certo mais uma vez.

Produto do quadrado da diferença, pela soma dos dois números.

$$\color{Sepia}{{(x – y)}^{2}\cdot{(x + y)}}$$

$\cpçpr{Blue}{x^3 – x^{2} y – xy^{2} + y^3 } $

Na substituição ficamos com:

${( 7 – 3)}^2\cdot{(7 + 3)} $

$ {4}^2\cdot {(10)} $

$ 16\cdot 10 $

$\color{Red}{160} $

${7^3 – 7^{2}\cdot 3 – 7\cdot{3}^2 + 3^3} $

${ 343 – 147 – 63 + 27}$

$ {370 – 210} $

$\color{Red}{160}$

Fechou de vez. Todas as regras vistas estão corretas e podem ser usadas sem problema. Não resta a menor dúvida.

Eu estou imaginando que alguém, neste momento, depois de ver a resolução de todas as regras, irá dizer: Mas por que vou usar tantos cálculos, se a forma direta é muito mais rápida e simples?

Sou levado a concordar com você. Realmente o cálculo feito com os números, sem todas as potências, sinais, multiplicações e tudo mais é bem mais curto e igualmente correto. Mas, no futuro, continuando os estudos, surgirão momentos, como por exemplo na fatoração, quando estas regras se tornarão extremamente úteis. Posso garantir, sem a menor dúvida, que você irá me agradecer, se conseguir lembrar ou encontrar um lugar qualquer em que isso esteja anotado para poder usar e facilitar sua vida, especialmente quem for continuar seus estudos em alguma área que utiliza matemática como ferramenta constante. Se você não for continuar nesse sentido, não fique triste, pois o conhecimento não ocupa espaço, o raciocínio se desenvolve e é aplicável em inúmeras situações, até mesmo onde você menos espera. Ao aprender estas coisas não estará gastando seu cérebro, que é como os músculos. Quanto mais usa, melhor eles funcionam. Sua memória e mesmo seu cérebro irão lhe agradecer muito pelos exercícios aos quais você os submete, pois isso os mantém ágeis e funcionando à perfeição. A memória é uma coisa natural de nosso cérebro. Ele registra e armazena tudo que vivemos em cada momento, do nascimento até o momento da morte. Pouco lhe importa se você quer ou não lembrar dos fatos. Eles ficam registrados. Por isso, quanto mais você a usar para armazenar coisas úteis, melhor para você mesmo, para sua saúde física e mental. Tudo isso pode até ajudar a retardar o eventual aparecimento de doenças como Alzheimer, Parkinson. Não que isso seja um remédio para evitar esses males, mas que ajuda e muito, disso não resta dúvida.

Curitiba, 16 de abril de 2016. Republicado em 17 de dezembro de 2017.

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/adamsdecio

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732

01.044 – Matemática, Álgebra, Produtos notáveis (continuação)

Agora o bicho vai pegar

Vamos avançar mais um pouco com os produtos notáveis. Nem todos os livros apresentam esses tópicos, mas vale a pena conhecer, se você deseja ir um pouco mais longe, desenvolver mais suas aptidões.

– Vamos ver o Cubo da Soma de dois números

Os dois números, serão novamente representados por duas letras. Para manter a sequência adotada nos primeiros três casos, vamos usar novamente as letras $\color{Red}a$ e $\color{Red}b$ para isso.

$$\color{Brown}{{( a + b)}^3}$$

Podemos separar a potência de expoente 3 em um produto de potências de mesma base, com uma com expoente 2 e outra com expoente 1. Assim:

$$\color{Sepia}{{{( a + b)}^2}{(a + b)}}$$

Como já sabemos o resultado do quadrado da soma, podemos agora fazer a multiplicação do trinômio quadrado perfeito resultante, pela soma dos números $\color{Red}a$ e $\color{Red}b$

$\color{Brown}{{(a^2 + 2ab + b^2)}{(a + b)}}$

${(a^2)}{a} + {(2ab)}{a} +{(b^2)}{a} + {(a^2)}{b} + {(2ab)}{b} + {(b^2)}{b}$

$a^3 + 2a^2b + b^2a + a^2b + 2ab^2+ b^3$

Temos agora um polinômio com seis termos, onde existem dois pares de termos semelhantes. Vamos agrupar estes termos e depois efetuar a adição de seus coeficientes numéricos.

$a^3 + 2a^2b + a^2b + 2ab^2 + ab^2 + b^3 $

$$\color{NavyBlue}{a^3 + 3a^2b + 3ab^2 + b^3}$$

O resultado é um polinômio de quatro termos e podemos enunciar a regra para sua obtenção da seguinte maneira:

“O cubo da soma de dois números é igual ao cubo do primeiro termo, mais o triplo do produto entre o quadrado do primeiro termo e o segundo termo, mais o triplo do produto do primeiro termo, pelo quadrado do segundo, mais o cubo do segundo termo”.

Para lembrar mais facilmente.

Na parte literal a variável do primeiro termo tem o expoente 3 no primeiro termo, expoente 2 no segundo termo, expoente 1 no terceiro termo e expoente 0 no quarto termo. A variável do segundo termo segue o inverso, isto é, seus expoentes estão em ordem crescente.

Vejamos um outro exemplo para resolver, aplicando essa regra.

$$\color{Sepia}{{( 2x + 3y)}^3}$$

Para facilitar, vamos por partes. O primeiro termo é 2x  e o seu cubo é

$$\color{Red}{{(2x)}^3}$$

$$\color{Red}{8 x^3}$$

O triplo do quadrado do primeiro, multiplicado pelo segundo termo será:

$ {3\cdot{(2^2x^2) (3y)}}$

$\color{Brown}{36 x^2y}$

O triplo do primeiro termo, multiplicado pelo quadrado do segundo será:

$ {3\cdot{2x}\cdot{(3^{2}y^{2})}}$

$\color{Brown}{54xy^{2}} $

O cubo do segundo termo será

${(3y)}^3$

$\color{Red}{27y^3}$

Falta apenas escrever os termos na ordem correta, para terminar:

$$\color{NavyBlue}{ 8x^3 + 36 x^{2}y + 54xy^{2} + 27y^3 }$$

Podemos dizer que esse polinômio de quatro termos é um cubo perfeito.

É a vez do Cubo da Diferença de dois números

Para manter a continuidade, vamos considerar os mesmos números (letras) e desenvolver o produto.

$$\color{Brown}{{( a – b )}^3}$$

Novamente desmembramos numa multiplicação de potências de mesma base.

$\color{Sepia}{{( a – b )}^{2} {(a – b)}}$

$ {(a^2 – 2ab + b^2)}{( a – b )} $

$ a^{2}{a} – 2a{a}b + a{b^{2}} + a^{2}{(-b)} – 2ab{(-b)} + b^{2}{(-b)} $

$ a^{3} – 2a^{2}b + ab^{2} – a^{2}b +2ab^{2} – b^{3} $

Agrupando os termos semelhantes e somando os coeficientes:

$ a^{3} – 2a^{2} b – a^{2}b + ab^{2} + 2ab^{2} – b^{3} $

$$\color{NavyBlue}{ a^{3} – 3a^{2}b + 3ab^{2} – b^{3}} $$

Se compararmos esse polinômio com o que foi obtido no caso do cubo da soma de dois números, veremos que eles são exatamente iguais, exceto dois sinais (-) no segundo e quarto termos. Assim, podemos escrever a regra.

“O cubo da diferença entre dois números é dado pela cubo do primeiro termo, menos o triplo do produto entre o quadrado do primeiro e o segundo termo, mais o triplo do produto do primeiro termo pelo quadrado do segundo, menos o cubo do segundo termo”.

Para lembrar mais facilmente.

A ordem dos expoentes nas variáveis segue a mesma sequência do cubo da soma, apenas os termos pares (segundo e quarto), tem um sinal (-) negativo.

Para aplicar a regra, vamos a um exemplo.

$$\color{Brown}{{( ax – by)}^{3}}$$

O primeiro termo é ax e o segundo termo é by. Vamos agora aplicar a regra.

O cubo do primeiro termo é

${(ax)}^{3} $

$\color{Sepia} {a^{3}x^{3}} $

O triplo do quadrado do primeiro multiplicado pelo segundo termo é

$ {3{(ax)}^{2}{(by)}}$

$\color{Sepia}{{3a^{2}bx^{2}y }}$

O triplo do primeiro termo multiplicado pelo quadrado do segundo é

$ {3ab^{2}xy{2} }$

O cubo do segundo termo é

$ {(by)} ^{3} $

$b^{3}y^{3} $

Escrevendo na ordem correta e aplicando os sinais teremos

$$\color{NavyBlue}{{ a^{3}x^{3} – 3 a^{2}bx^{2}y + 3ab^{2}xy^{2} – b^{3}y^{3} }}$$

Produto do quadrado da soma, pela diferença de dois números.

$$\color{Brown}{{( a + b)}^{2}\times {(a – b)}}$$

Já sabemos que o quadrado da soma é um trinômio quadrado perfeito (trinômio soma). Podemos usar o resultado imediatamente.

${( a^{2} + 2ab + b^{2})} {(a – b)} $

$ {a}{a^{2}} + {a}{(2ab)} + {a}{b^{2}} +{(-b)}{a^{2}} + {(-b)}{(2ab)} + {(-b)}{b^{2}} $

$ a^{3} + 2a^{2}b + ab^{2} – a^{2}b – 2ab^{2} – b^{3} $

$ a^{3} + 2a^{2}b – a^{2}b + ab^{2} – 2ab^{2} – b^{3} $

$$\color{NavyBlue}{a^{3} + a^{2}b -ab^{2} – b^{3}} $$

Podemos enunciar a regra para obter o produto do quadrado de dois números pela sua diferença, como segue.

“O produto do quadrado da soma de dois números, pela sua diferença é dado pelo cubo do primeiro termo, mais o quadrado do primeiro multiplicado pelo segundo, menos o primeiro multiplicado pelo quadrado do segundo, menos o cubo do segundo termo”.

Vamos tentar por em prática? Seja:

$$\color{Sepia}{{(2x + y)}^{2}\cdot{(2x – y)}}$$

${(4x^{2} + 4xy + y^{2})}{(2x – y)} $

$ {(2x)}^{3} + {(2x)}^{2}{y} – 2x{y^{2}} – {y^{3}} $

$$\color{Orchid}{ {8x^3 + 4x^{2}y – 2xy^2 – y^3 }}$$

Produto do quadrado da diferença entre dois números pela sua soma.

$$\color{Brown}{{( a – b )}^{2}\cdot{(a + b)}}$$

O procedimento é semelhante ao anterior.

${( a^{2} – 2ab + b^{2})} {(a + b)} $

$ a^{2}a + {(- 2ab)}{(a)} + ab^{2} + a^{2}b + {(- 2ab)}{(b)} + {(b^{2})}{b} $

$ a^{3} – 2a^{2}b + ab^{2} + a^{2}b – 2ab^{2} + b^{3} $

$ a^{3} -2a^{2}b + a^{2}b + ab^{2} -2ab^{2} + b^{3} $

$ a^{3} – a^{2}b – ab^{2} + b^{3}$

$$\color{Indigo}{ a^{3} – a^{2}b – ab^{2} + b^{3} }$$

“O produto entre o quadrado da diferença entre dois números e a sua soma, é igual ao cubo do primeiro termo, menos o produto entre o quadrado do primeiro e o segundo termo, menos o produto entre o primeiro termo e o quadrado do segundo, mais o cubo do segundo termo”.

Obs.: Para memorizar, fica bastante fácil. Basta observar que os termos são obtidos de mesmo modo, apenas há a diferença entre os sinais dos termos. Se conseguir criar um mecanismo que permita recordar essas sequências, terá meio caminho andado para lembrar dos enunciados. 

Vamos por em prática.

$ {( ma + n)} {(ma – n)}^{2} $

${( ma + n)}{[(ma)^{2} – 2mna + n^{2}]} $

$\color{Orchid}{ m^{3}a^{3} – m^{2}na^{2} – mn^{2}a + n^{3}}$$

Vamos deixar os exercícios para um momento próximo. Esses são trabalhosos, mas em momentos de aplicação, ajudam a economizar um bocado de tempo no desenvolvimento de expressões maiores. Sem esquecer de um assunto que vem pouco à frente, que é a fatoração, onde fazemos o processo inverso do que fazemos aqui.

Curitiba, 15 de abril de 2016. Republicado em 17 de dezembro de 2017. Atualizado em 07 de junho de 2018.

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/adamsdecio

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732

01.043 – Matemática, Álgebra. Produtos notáveis.

O que é algo notável? 

Tudo que tem uma característica que chama atenção, tem algo além do comum, pode ser apontado como algo notável. Então, a expressão Produtos notáveis tem algo de importante e com aplicações relevantes em algum assunto mais adiante. Vejamos quais são esses casos.

Quadrado da soma de dois números. 

Você provavelmente irá pensar que é mais fácil efetuar a soma e depois calcular a potência, ou seja elevar ao quadrado. Mas, se os números estiverem representados por letras, ou letras e números, como fica? Vamos ver?

$$\color{BrickRed}{ a + b} $$

É a adição dos números representados por letras e fica indicada. Vamos elevar ao quadrado:

$$\color{OrangeRed}{{( a + b)}^2}$$

Temos a multiplicação de um binômio por ele mesmo, sendo a o primeiro termo e b o segundo.

${(a + b)}\cdot{(a + b)} $

$ {a}\cdot {a} + {a}\cdot{b} + {b}\cdot {a} + {b}\cdot{b}$

${ a^2 + ab + ba + b^2} $

Há dois termos semelhantes, embora estejam com a ordem das letras invertida, isso não significa nada. Podemos usar a propriedade comutativa da multiplicação e colocar ambos na mesma ordem. Aqui estamos vendo uma aplicação da propriedade vista no estudo das quatro operações. Lá ela não parecia ter importância, mas aqui já fica claro que para alguma coisa serve.

${ a^2 + ab + ab + b^2}$

$$\color{NavyBlue}{ a^2 + 2ab + b^2}$$

O resultado é um trinômio, cujo primeiro termo é o primeiro termo da soma elevado ao quadrado, o segundo termo é o dobro do produto do primeiro pelo segundo termo e o terceiro termo é o quadrado do segundo termo da soma. Isso nos permite estabelecer a regra que pode ser usada em qualquer caso de uma soma de dois números, elevada ao quadrado.

O quadrado da soma de dois números é igual ao quadrado do primeiro termo, mais o duplo produto (dobro) do primeiro termo pelo segundo, mais o quadrado do segundo termo”.

Bom para lembrar!

Se observar bem, verá que o primeiro termo da soma, aparece primeiro com o expoente 2, depois com o expoente 1 e por último com o expoente 0, o que o torna igual a 1 (unidade). Já o segundo termo tem os expoentes em ordem inversa: 0, 1 e por último 2.

Vamos aplicar isso em alguns exemplos:

a) $\color{Indigo}{{(2x + y)}^2}$

Primeiro termo é 2x o segundo termo é y

${{(2x)}^2 + 2\cdot 2\cdot{x}{y} + y^2}$

${{(2^2)\cdot (x^2)}\cdot 2\cdot{x}{y} + (y^2)}$

$$\color{Purple}{4x^2 + 4xy + y^2}$$

b) $\color{Indigo}{{(3m + 5)}^2}$

O primeiro termo é 3m e o segundo termo é 5.

$ {{(3m)}^2 + 2\cdot 3\cdot {m}\cdot 5 + 5^2}$

$$\color{Purple}{9m^2 + 30m + 25}$$

c) $\color{Indigo}{{( 6 + 4xy)}^2}$

O primeiro termo é 6 e o segundo termo é 4xy.

${6^2 + 2\cdot 6\cdot {(4xy)} + {(4xy)}^2 }$

$$\color{Purple}{36 + 48xy + 16x^2y^2}$$

d) $\color{Indigo}{{( p + 3q)}^2}$

Primeiro termo é p o segundo termo é 3q.

$ p^2 + 2\cdot p\cdot 3q + {(3q)}^2 $

$$\color{Purple}{p^2 + 6pq + 9q^2}$$

Resolva aplicando a regra vista os quadrados da soma de dois números, na lista a seguir.

a)$\color{Orchid}{{(3ax + 2by)}^2}$

b)$\color{Orchid}{{(7n + 3m)}^2}$

c)$\color{Orchid}{{(2 + 8mx)}^2}$

d)$\color{Orchid}{{(5a + 3b)}^2}$

e)$\color{Orchid}{{(11 + 5mn)}^2}$

f)$\color{Orchid}{{(4mx + 7n)}^2}$

g)$\color{Orchid}{{(6xy^2 + 2x^2y)}^2}$

h)$\color{Orchid}{{(9pq + 13)}^2}$

Quadrado da diferença de dois números

A mesma coisa que acontece no caso da soma, também ocorre com a diferença. Os números são representados por letras, formando no final a multiplicação de dois binômios iguais. Seja o exemplo:

$$\color{BrickRed}{{( a – b)}^2}$$

A letra a é o primeiro termo e a letra b é o segundo termo da diferença. 

$$\color{NavyBlue}{{( a – b)}{(a – b)}}$$

Cada termo do primeiro fator é multiplicado por todos os termos do segundo fator. O que resulta em:

${a}\cdot {a} + {a}\cdot {(-b) } + {(-b)}\cdot {a} + {-b}\cdot{b} $

$ a^{(1+ 1)} – ab – ba + b^{(1 + 1)} $

$$\color{Orchid}{ a^2 – 2ab + b^2}$$

Os dois termos (- ab) e (-ba), são semelhantes, pois a ordem dos fatores pode ser alterada sem causar problemas no resultado. Basta aplicar a propriedade comutativa da multiplicação. Assim passamos a ter que:

“O quadrado da diferença entre dois números é igual ao quadrado do primeiro termo, menos o duplo produto (dobro) do primeiro termo pelo segundo, mais o quadrado do segundo termo”.

Bom para lembrar!

Também aqui os expoentes das partes literais seguem a mesma sequência como acontece no quadrado da soma. A única diferença é que os sinais que precedem os termos, são alternadamente +, – e +. Isso facilita a recordação do resultado de um produto notável desse tipo.

Vamos exercitar:

a) $\color{Indigo}{{(x – y)}^2}$

O primeiro termo é a letra x e o segundo termo é a letra y.

${(x – y )}{(x – y)}$

$$\color{Orchid}{x^2 – 2xy + y^2}$$

b) $\color{Indigo}{{(3x – 2y)}^2}$

O primeiro termo é 3x e o segundo termo é 2y.

${(3x)}^2 – 2\cdot {(3x)}{(2y)} +{(2y)}^2$

$$\color{Orchid}{9x^2 – 12xy + 4y^2}$$

c) $\color{Indigo}{{(ab – bc)}^2}$

O primeiro termo é ab e o segundo termo é bc.

${(ab – bc)} {(ab – bc)} $

${(ab)}^2 – 2\cdot{(ab)}{(bc)} + {(bc)}^2 $

$$\color{Indigo}{{a^2b^2 – 2ab^2c + b^2c^2}}$$

d) $\color{Indigo}{{(5 – 2a)}^2}$

$ {(5 – 2a)}{(5 – 2a)}$

$ {5^2 – 2\cdot 5\cdot{2a} + {(2a)}^2}$

$$\color{Orchid}{ 25 – 20a + 4a^2 }$$

Obs.: Note que tanto o quadrado da soma como da diferença, resulta sempre em um trinômio, onde há dois termos que são quadrados e um termo que representa o produto dos dois termos. Costumeiramente esses trinômios recebem o nome de Trinômio quadrado perfeito. Voltaremos a falar neles em outro momento, ou seja por ocasião da  fatoração. 

Resolva aplicando a regra acima, os quadrados das diferenças entre dois números da seguinte sequência.

a)$\color{Brown}{{(5ax – 3bx)}^2}$

b)$\color{Brown}{{(Axy – Byz)}^2}$

c)$\color{Brown}{{(4rp^2 – 3pq)}^2}$

d)$\color{Brown}{{(5xy^3 – 3xy^2)}^2}$

e)$\color{Brown}{{(mz – my)}^2}$

f)$\color{Brown}{{(2aj – 3bj)}^2}$

g)$\color{Brown}{{(6gx – 7gy)}^2}$

h)$\color{Brown}{{(3my – 4n)}^2}$

Produto da soma de dois números pela sua diferença.

Sejam os números representados pelas letras b. A soma será (a + b) e a diferença será (a – b). Vamos multiplicar o binômio soma pelo binômio diferença.

$\color{Indigo}{(a + b)}\cdot\color{Orchid} {(a – b)}$

${a}{a} + {a}{(-b)} + {b}{a} + {b}{(-b)} $

${ a^2 – ab + ab – b^2}$

$$\color{Blue}{a^2 – b^2}$$

Notamos que os dois termos semelhantes, são simétricos e por isso sua soma é igual a zero, ou seja, se anulam. O resultado é um binômio diferença entre os quadrados dos dois números. 

“O produto da soma de dois números pela sua diferença, é igual à diferença entre seus quadrados”.

Poderíamos também dizer: O produto da soma pela diferença de dois números é igual ao quadrado do primeiro menos o quadrado do segundo termo”. 

Vamos exercitar um pouco.

a) $\color{Sepia}{{(mn + n)}{(mn – n)}}$

$ {{(mn)}^2 – n^2 }$

$$\color{NavyBlue}{ m^2n^2 – n^2 }$$

b) $\color{Sepia}{{(7 – 3x)} {(7 + 3x)}}$

$ {{7}^2 – {(3x)}^2 }$

$$\color{NavyBlue}{ 49 – 9x^2 }$$

c) $\color{Sepia}{{(4x + 3z)}{(4x – 3z)}}$

${(4x)}^2 – {(3z)}^2 $

$$\color{NavyBlue}{16x^2 – 9z^2 }$$

d) $\color{Sepia}{{( 1 + ab)}{( 1 – ab)}}$

$ {1^2 -{(ab)}^2 }$

$\color{NavyBlue}{1 – a^2b^2 }$

Resolva os produtos das somas pelas respectivas diferenças entre dois números, aplicando a regra.

a)$\color{Sepia}{{(2a + 3b)}{(2a – 3b)}}$

b)$\color{Sepia}{{(mn – 5)} {(mn + 5)}}$

c)$\color{Sepia}{{(3ax + 2by)}{(3ax – 2by)}}$

d)$\color{Sepia}{{(mx + ny)}{(mx – ny)}}$

e)$\color{Sepia}{{(7 – 5b)}{(7 + 5b)}}$

f)$\color{Sepia}{{(6az + 3by)}{(6az – 3by)}}$

g)$\color{Sepia}{{(3bp + 5br)}{(3bp – 5br)}}$

h)$\color{Sepia}{{(5qp – 7rp)}{(5qp + 7rp)}}$

Curitiba, 09 de abril de 2016. Republicado em 17 de dezembro de 2017, junto com uma bateria de exercícios de aplicação. Revisto em 07 de junho de 2018.

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732

01.042 – Matemática – Álgebra, multiplicação de polinômios (exercícios resolvidos)

Exercitar é o caminho da aprendizagem.

Vamos começar por resolver os exercícios que ficaram no último post, sobre esse assunto.

  1. Efetuar a multiplicação dos termos algébricos a seguir.

a) $\color{Sepia}{({7\over 5}{bx})}{({5\over 3}{cx^2})}$

Vamos agrupar os coeficientes e as partes literais, para facilitar a operação.

$({7\over 5})\cdot({5\over3})\cdot {(bx)}\cdot {(cx^2)}$

Entre as frações coeficientes, temos fatores comuns entre numerador e denominador, o que permite simplificar. As partes literais, tem os expoentes da mesma letra somados na multiplicação.

${7\over \not{5}}\cdot{\not{5}\over 3}{bcx^{(1 +2)}} $

$$\color{NavyBlue}{{7\over 3}{bcx^3}}$$

b) $\color{Sepia}{{(2ay)}{(5ay)}}$

Agrupando os fatores

${2\cdot 5}\cdot{a\cdot a}\cdot{y\cdot y}$

$ {10\cdot {a^{(1 + 1)}}\cdot {y^{(1+1)}}}$

$$\color{NavyBlue}{10a^2y^2}$$

c) $\color{Sepia}{{(6 pr)}{({2\over3}{qr})}}$

Obs.: Qualquer número inteiro pode ser escrito na forma de uma fração, com o número por numerador e denominador igual a unidade. É o que iremos fazer neste exercício, para entender melhor a multiplicação dos coeficientes numéricos. Com a prática isso se torna dispensável.

$({6\over 1})\cdot({2\over 3})\cdot{(pr)}\cdot{(qr)}$

O numerador da primeira fração é divisível pelo denominador da segunda. Vamos simplificar, eliminando o denominador.

$({\not{6}\over 1})\cdot({2\over \not{3}}\cdot pr\cdot qr$

$ {(2\cdot 2)}\cdot pq\cdot r^{(1 + 1)}$

$$\color{NavyBlue} {4pqr^2}$$

d) $\color{Sepia}{{(3 i)}{(5ij)}}$

${3\cdot 5}\cdot{i\cdot i}\cdot {j}$

${15\cdot{i^{(1 + 1)}}\cdot {j}}$

$$\color{NavyBlue}{15i^2j}$$

e) $\color{Sepia}{{(4mn)}{(3n^3)}}$

${(4\cdot 3)}\cdot m\cdot{n^{(1+3)}}$

$$\color{NavyBlue}{12mn^4}$$

f) $\color{Sepia}{{(ax^2y)}{(bxy^3)}}$

${a\cdot b\cdot x^{(2 +1)}\cdot y^{(1 + 3)}}$

$$\color{NavyBlue}{abx^3y^4}$$

g)$\color{Sepia}{{(bx^3)}{(2cxy^2)}{(5bc^2)}}$

${b^{(1+1)}c^{(1+2)}x^{(3+1)}y^2}$

$$\color{NavyBlue}{b^2c^3x^4y^2}$$

h)$\color{Sepia}{{(3mn^2)}{(2m^3n)}{(-mn)}}$

${3\cdot 2\cdot (-1)\cdot m^{(1 + 3 + 1)}\cdot n^{(2 + 1 + 1)}}$

$\color{NavyBlue}{ -6m^5n^4}$$

2. Efetuar a multiplicação dos termos algébricos pelos polinômios a seguir.

a) $\color{BrickRed}{{(3ab)}\cdot {(2a + 3b – 5c)}}$

${(3ab)}\cdot{(2a)} +{(3ab)}\cdot{(3b)} + {(3ab)}\cdot{(-5c)}$

${(3\cdot 2)\cdot a^{(1 + 1)}\cdot b} +{3\cdot 3\cdot ab^{(1+1)}} + {3\cdot{(-5)}\cdot abc}$

$$\color{NavyBlue} {6a^2b + 9ab^2 – 15abc}$$

b) $\color{BrickRed}{{(mx^2)}\cdot {(mx + n{x^2}y + mxy)}}$

${(mx^2)}\cdot{(mx)} +{(mx^2)}\cdot{(nx^{2} y)} + {(mx^2)}\cdot{(mxy)}$

${m^{(1 + 1)}{x^{(2 +1)}} +{mnx^{(2+2)} y} + {m^{(1+1)}x^{(2+1)}} y}$

$$\color{NavyBlue}{m^2x^3 + mnx^{4}y +m^{2}x^{3}y}$$

c) $\color{Sepia}{{(5u^2v)}{(2uv + 4u – 5v + u^2v^3)}}$

$ 5u^2v\cdot 2uv + 5u^2v\cdot 4u + 5u^2v\cdot{(-5v)} +5u^2v\cdot u^2v^3 $

$5\cdot 2\cdot u^2v\cdot uv +5\cdot 4\cdot u^2v\cdot u + 5\cdot{(-5)}u^2v\cdot v + 5\cdot u^2v\cdot u^2 v^3 $

$$\color{NavyBlue}{10u^3 v^2 + 20u^3v -25u^2v^2 + 5u^4v^4}$$

d) $\color{Sepia}{({2\over 3}{axy^3}){(6xy – 3ay^2 + 9a{x^2}y)}}$

$({2\over 3}{axy^3})\cdot{(6xy)} + ({2\over3}{axy^3})\cdot {(-3ay^2)} + ({2\over 3}{axy^3})\cdot{(9ax^{2}y)}$

${2\over 3}\cdot{6}\cdot{(axy^3)}\cdot{xy} + {2\over 3}\cdot {(-3)}\cdot {axy^3} \cdot{ay^2} + {2\over 3}\cdot 9\cdot{axy^3}\cdot{ax^{2}y} $

${4ax^{(1+1)}y^{(3+1)}} -2a^{(1+1)}xy^{(3+2)} + 6a^{(1 + 1)}x^{(1+2)}y^{(3 + 1)}$

$$\color{NavyBlue}{ 4ax^{2}y^{4} – 2a^{2}xy^{5} + 6a^{2}x^{3}y^{4}}$$

e)$\color{Sepia}{{(3px^2)}{(5px + 3pq – 4qx^3)}}$

${(3px^2)}{(5px)} + {(3px^2)}{(3pq)} + {(3px^2)}{(-4qx^3)}$

${(3\cdot 5\cdot p^{(1 + 1)}\cdot x^{(2 + 1)}} + {3\cdot 3\cdot p^{(1 + 1)}\cdot q \cdot x^2} + {3\cdot {(-4)}\cdot p\cdot q\cdot x^{(2 + 3)}}$

$$\color{NavyBlue}{{15p^2x^3 + 9p^2qx^2 – 12pqx^5}}$$

f)$\color{Sepia}{{(2mn^2 + 5mx – 3nx^3)}{(2mn)}}$

${(2mn^2\cdot 2mn)} + {(5mx\cdot 2mn)} + {(-3nx\cdot 2mn)}$

$$\color{NavyBlue}{{4m^2n^3 + 10m^2nx – 6mn^2x}}$$

g)$\color{Sepia}{{(3xz^3)}{(2xy – 4xy^3z + 6x – x^2yz)}}$

${(3xz^3)\cdot (2xy)} + {(3xz^3)\cdot(-4xy^3z)} + {(3xz^3)\cdot (6x)} + {(3xz^3) \cdot(-x^2yz)}$

$$\color{NavyBlue}{{6x^2yz^3 – 12x^2y^3z^2 + 18x^2z^3 – 3x^3yz^4}}$$

h)$\color{Sepia}{{Ax^2)}{(Ax^3 + Bxy – Cyz^2)}}$

${(Ax^2)\cdot(Ax^3)} + {(Ax^2)\cdot(Bxy)} + {(Ax^2)\cdot(-Cyz^2)}$

${A^2 x^{(2 + 3)} + ABx^{(2 + 1)}y – AC x^2yz^2}$

$$\color{NavyBlue}{{A^2 x^5 + ABx^3y – ACx^2yz^2}}$$

3. Efetuar a multiplicação dos polinômios propostos a seguir.

a)$\color{Indigo}{{( a + ab)}{(abx + x)}}$

Agora chegou a hora de multiplicar todos os termos do primeiro polinômio, por todos os do segundo. No final reduzir os termos semelhantes, se os houver. Assim:

${a}\cdot {abx} + {a}\cdot{x} + {ab}\cdot {abx} + {ab}\cdot {x} $

${a^{(1+1)}bx + ax + a^{(1+1)}b^{(1+1)}x + abx }$

$$\color{Purple}{{ a^{2}bx + ax  + a^{2}b^{2}x + abx }}$$

b)$\color{Indigo}{{(pm – {p^2}n)}{(m^2 – pm^2 – pn)}}$

$ {pm}\cdot (m^2) + {pm}\cdot {(-pm^2)} + {pm}\cdot {-pn} + {(- p^2)}n\cdot {(m^2)} + {(-p^2)}n\cdot {(-pm^2)} + {(-p^2)}n\cdot{(-pn)} $

$ {pm^{(1 + 2)} – p^{(1 + 1)}m^{(1 +2)} – p^{(1 + 1)}mn – p^{2 }m^{2}n + p{(2+1)}m^{2}n + p^{(2+1)}n^{(1+1)}} $

$$\color{Purple}{pm^3 – p^2m^3 – p^2mn – p^2m^2n + p^3m^2n + p^3n^2}$$

Não há termos semelhantes, portanto a expressão final fica assim mesmo.

c)$\color{Indigo}{{(2x – 3 y)}{(5 + 2xy – 4 x^2 + 3xy^3)}}$

${2x}\cdot 5 + 2x\cdot {2xy} + 2x\cdot {(-4x^2)} + 2x\cdot {(3xy^3} + {(-3y)}\cdot 5 + {(-3y)}\cdot {(2xy)} +{(-3y)}\cdot {(3xy^3)} +{(-3y)}\cdot {(-4x^2)} $

$ 10x + 4x^{2}y – 8x^{(1+2)} +6x^{(1+1)}y^3 -15 y -6xy^{(1 +1)} – 9 xy^{(1 + 3)} +12x^{2}y $

$$\color{Purple}{{10x + 4x^{2} y – 8x^3 + 6x^{2}y^3 – 15 y – 6xy^2 – 9xy^4 + 12 x^{2}y}}$$

Não há termos semelhantes e o resultado fica assim mesmo.

d) $\color{Indigo}{{(3u + 5v)}{(6u^2 – 2 v + 7uv)}}$

$3u\cdot{(6u^2)} + 3u\cdot {(-2v)} + 3u\cdot{(7uv)} + 5v\cdot{(6u^{2})} + 5v\cdot{(- 2v)} + 5v\cdot{(7uv)} $

$$\color{Indigo}{18u^3 – 6uv + 21 u^{2}v + 30u^2v – 10v^2 + 35uv^{2}}$$

e)$\color{Indigo}{{(4m – 2n)}{(mn + m^2n – 3n^3)}}$

${(4m)\cdot(mn) + (4m)\cdot(m^2n) + (4m)\cdot(-3n^3) + (-2n)\cdot (mn) + (-2n)\cdot (m^2n) + (-2n)\cdot(-3n^3)}$

$\color{Purple}{{4m^2n + 4m^3n – 12mn^3 – 2mn^2 – 2m^2n^2 + 6n^4}}$$

Sem termos semelhantes, fica assim mesmo.

f)$\color{Indigo}{{(5 – 6x + 3xy + x^2y^3)}{(2 + 4xy)}}$

${(2\cdot 5) + 2\cdot (-6x) + 2\cdot(3xy) + 2\cdot(x^2y^3) + 4xy\cdot 5 + 4xy\cdot(-6x) + 4xy\cdot(3xy) + 4xy\cdot(x^2y^3)}$

$$\color{Indigo}{10 – 6x + 6xy + 2x^3y^4 + 20xy – 24x^2y + 12x^2y^2 +4x^3y^4}$$

Há dois pares determos semelhantes. Vamos agrupá-los e substituir pela soma algébrica dos mesmos.

${10 – 6x +(6xy + 20xy) + (2x^3y^4 + 4x^3y^4) + 24x^2y}$

${10 – 6x + 26xy + 6x^3y^4 + 24x^2y}$

Colocando os expoentes de x em ordem crescente ficamos com:

$$\color{Purple}{10 – 6x + 26xy + 24x^2y + 6x^3y^4}$$

g)$\color{Indigo}{{(4r^2 – 3pq)}{(5 + 3r – 2rq)}}$

${(4r^2)\cdot(5) + (4r^2)\cdot(3r) + (4r^2)\cdot((-2rq) +(-3pq)\cdot(5) + (-3pq)\cdot(3r) + (-3pq)\cdot(-2rq)}$

${20r^2 + 12r^3 – 8r^3q -15pq -9pqr +6pq^2r}$

Ordem crescente dos expoentes de r:

$$\color{Purple}{{-15pq  – 9pqr + 6pq^2r + 20r^2 + 12r^3 – 8r^3q}}$$

h)$\color{Indigo}{{(2ny – 3mx)}{(4nm + 2mx – 5mnx)}}$

${(2ny)\cdot(4nm) + (2ny)\cdot (2mx) + (2ny)\cdot(-5mnx) + (-3mx)\cdot(4nm) + (-3mx)\cdot(2mx) + (-3mx)\cdot(-5mnx)}$

$\color{Purple}{8n^2my + 4mnxy -10mn^2xy – 12m^2nx – 6m^2x^2 – 15m^2nx^2}$$

Não há termos semelhantes a reduzir.

Curitiba, 09 de abril de 2016. Republicado em 16 de dezembro de 2017.

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732

01.041- Matemática, álbgebra. Multiplicação de polinômios.

Multiplicando polinômios

No post anterior, vimos como se multiplica um termo algébrico por outro e também um termo por um polinômio. E se tivermos que multiplicar um polinômio por outro, como fica a questão? Seja por exemplo:

$$\color{Sepia}{{(mx^2 + my)}\cdot{(2x + 3xy – 5y)}}$$

Vamos multiplicar alternadamente o primeiro termo do primeiro polinômio por todos os termos do segundo, até terminar. O resultado será uma expressão com vários termos, entre os quais é possível haver termos semelhantes. Bastará fazer a redução e teremos o resultado procurado. Façamos em partes.

$$\color{Red}{{mx^2}\cdot({2x + 3xy – 5y})}$$

$$\color{Red}{(mx^2)\cdot (2x)} + {(mx^2)\cdot (3xy)} +{(mx^2)\cdot (-5y)}$$

$$\color{Red}{2\cdot m\cdot x^2\cdot x} + {3\cdot m\cdot x^2\cdot xy} +{-5\cdot m\cdot  x^2\cdot y}$$

$$\color{Red}{{2mx^3 + 3mx^3y – 5mx^2y}}$$

$$\color{Indigo}{{my\cdot 2x} +{my\cdot 3xy} + {my\cdot{-5y}}}$$

$$\color{NavyBlue}{2mxy + 3mxy^2 – 5my^2}$$

Escrevendo as duas partes juntas, verificaremos que não há termos semelhantes e assim ficaremos com uma expressão de seis termos no final.

$$\color{NavyBlue}{2mx^3 + 3mx^3y – 5mx^2y + 2mxy + 3mxy^2 – 5my^2}$$

Vamos a outro exemplo:

$$\color{Sepia}{{( 3x^2 + 2x)}\cdot{(2x^3 + x^2)}}$$

Na multiplicação do primeiro termo do primeiro polinômio, pelo segundo polinômio resulta:

$\color{Red}{{(3x^2)}\cdot{(2x^3 +x^2)}}$

$\color{Red}{{(3x^2)}{(2x^3)} + {(3x^2)}{(x^2)}}$

$\color{Red}{{6x^{(2 + 3)}} + 3x^{(2+2)}}$

$\color{Red}{6x^5 + 3x^4}$

A segunda parte fica:

$\color{Red}{{(2x)}\cdot{(2x^3 +x^2)}}$

$\color{Red}{{2x\cdot 2x^3} + (2x)\cdot ({x^2})} $

$\color{Red}{4x^{(1+3)} + 2x^{(1+2)}}$

$$\color{Indigo}{4x^4 + 2x^3}$$

Reunindo as duas partes teremos:

$\color{NavyBlue}{6x^5 + 3x^4 +4x^4 + 2x^3}$

Temos dois termos semelhantes:

$\color{Brown}{{6x^5 +{(3x^4 + 4x^4)} + 2x^3}}$

$$\color{Purple}{6x^5 + 7x^4 + 2x^3}$$

Podemos, para facilitar, fazer as multiplicações na mesma sequência, sem separar, subentendendo alguns passos, depois de dominarmos o processo. Ou seja, podemos fazer as multiplicações mentalmente e escrever apenas os resultados, de modo a diminuir o espaço ocupado no papel. Mas isso deve ser feito, depois de termos perfeito domínio de cada passo. Não significa que iremos omitir os passos, apenas os fazemos em sequência e depois escrevemos o resultado. Isso acontece na medida em que adquirimos desenvoltura com as diferentes operações.

Hora de exercitar.

  1. Efetuar a multiplicação dos termos algébricos a seguir.

a)$\color{Indigo}{({7\over 5}\cdot bx)\cdot{({5\over 3}\cdot cx^2})}$

b$\color{Indigo}{{(2ay)}{(5ay)}}$

c)$\color{Indigo}{{(6 pr)}{({2\over3}qr)}}$

d)$\color{Indigo}{{(3 i)}{(5ij)}}$

e)$\color{Indigo}{{(4mn)}{(3n^3)}}$

f)$\color{Indigo}{{(a{x^2}y)}{(bx{y^3})}}$

g)$\color{Indigo}{{(bx^3)}{(2cxy^2)}{(5bc^2)}}$

h)$\color{Indigo}{{(3mn^2)}{(2m^3n)}{(-mn)}}$

2. Efetuar a multiplicação dos termos algébricos pelos polinômios a seguir.

a) $\color{Sepia}{{(3ab)}\cdot {(2a + 3b – 5c)}}$

b) $\color{Sepia}{{(mx^2)}\cdot {(mx + nx^2}y + mxy)}$

c) $\color{Sepia}{{(5 u^2v)}{(2uv + 4u – 5v + {{u^2}v^3})}}$

d) $\color{Sepia}{{({2\over 3}{axy^3})}{(6xy – 3ay^2 + 9a{x^2}y)}}$

e)$\color{Sepia}{{(3px^2)}{(5px + 3pq – 4qx^3)}}$

f)$\color{Sepia}{{(2mn^2 + 5mx – 3nx^3)}{(2mn)}}$

g)$\color{Sepia}{{(3xz^3)}{(2xy – 4xy^3z + 6x – x^2yz)}}$

h)$\color{Sepia}{{Ax^2)}{(Ax^3 + Bxy – Cyz^2)}}$

3. Efetuar a multiplicação dos polinômios propostos a seguir.

a)$\color{Brown}{{( a + ab)}{(abx + x)}}$

b)$\color{Brown}{{(pm – {p^2}n)}{(m^2 – pm^2 – pn)}}$

c)$\color{Brown}{{(2x – 3 y)}{(5 + 2xy – 4 x^2 + 3xy^3)}}$

d)$\color{Brown}{{(3u + 5v)}{(6u^2 – 2 v + 7uv)}}$

e)$\color{Brown}{{(4m – 2n)}{(mn + m^2n – 3n^3)}}$

f)$\color{Brown}{{(5 – 6x + 3xy + x^2y^3)}{(2 + 4xy)}}$

g)$\color{Brown}{{(4r^2 – 3pq)}{(5 + 3r – 2rq)}}$

h)$\color{Brown}{{(2ny – 3mx)}{(4nm + 2mx – 5mnx)}}$

Curitiba, 31/março/2016. Republicado em 16 de dezembro de 2017.

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732

01.040 – Matemática – Álgebra. Multiplicação de termos e expressões algébricas.

Multiplicação de expressões algébricas

Resolução de exercícios do post anterior.

Adicionar e depois subtrair as expressões polinomiais, ordenando os resultados em ordem crescente dos expoentes da variável comum a todos os termos.

a) $$\color{Sepia}{5ay – 3 by^5 – 2 y^2 + a y^3} $$ $$\color{Sepia}{2ay^3 + 3by^5 – 2ay}$$

Adição: $$\color{Red}{({5ay – 2ay}) + ({-3by^5 + 3by^5}) – 2y^2 +({ay^3 + 2ay^3})}$$

$$\color{Red}{3ay – 2y^2 +3ay^3}$$

Já está em ordem crescente dos expoentes de y.

Subtração: $$\color{Sepia}{({5ay – 3by^5 – 2y^2 + ay^3}) – ({2ay^3 + 3by^5 – 2ay})}$$

Eliminando os parênteses, ficamos com:

$$\color{Red}{5ay – 3by^5 – 2y^2 + ay^3 – 2ay^3 – 3by^5 + 2ay}$$

Agrupando os termos semelhantes:

$$\color{Red}{({5ay + 2ay}) +({-3by^5 – 3by^5}) – 2y^2 +({ay^3 – 2ay^3})}$$

$$\color{Red}{7ay – 6by^5 -2by^2 – ay^3}$$

Ordenando os expoentes de y em ordem crescente.

$$\color{NavyBlue}{7ay -2by^2 -ay^3 -6by^5}$$

b) $$\color{Sepia}{7bx^2 – 3cx + 4 ax^4}$$

$$\color{Sepia}{3cx +4ax^4 – 2dx^3}$$

Adição: $$\color{Red}{({7bx^2 – 3cx + 4ax^4}) + ({+ 3cx + 4ax^4 – 2dx^3})} $$

$$\color{Red}{7bx^2 + {(- 3cx + 3cx )} + {(4ax^4 + 4ax^4}) – 2dx^3}$$

$$\color{Indigo}{7bx^2 + 8ax^4 – 2dx^3}$$

Em ordem crescente: $$\color{NavyBlue}{7bx^2 – 2dx^3 + 8ax^4}$$

Subtração: $$\color{Red}{({+ 7bx^2 – 3cx + 4ax^4}) – ({+ 3cx + 4ax^4 – 2dx^3})}$$

$$\color{Red}{+ 7bx^2 – 3cx + 4ax^4 – 3cx – 4ax^4 + 2dx^3}$$

$$\color{Red}{7bx^2 + ({ – 3cx – 3cx}) + ({4ax^4 – 4ax^4}) + 2dx^3}$$

$$\color{Indigo}{7bx^2 -6cx + 2dx^3}$$

Em ordem crescente: $$\color{NavyBlue}{-6cx + 7bx^2 + 2dx^3}$$

c) $$\color{Sepia}{mz^3 + 3nz – 5 z^2 }$$ $$\color{Sepia}{4mz^3 – 5z^2 + 4 nz}$$

Adição: $$\color{Red}{({mz^3 + 3nz – 5z^2}) + ({+4mz^3 – 5z^2 + 4nz})} $$

$$\color{Red}{({+ mz^3 + 4mz^3}) +({3nz + 4nz}) + ({- 5z^2 – 5z^2}) }$$

$$\color{NavyBlue}{5mz^3 + 7nz – 10z^2}$$ $$\color{NavyBlue}{7nz – 10z^2 + 5mz^3}$$

Subtração: $$\color{Red}{({mz^3 + 3nz – 5z^2}) – ({+ 4mz^3 – 5z^2 + 4nz})}$$

$$\color{Red}{mz^3 + 3nz – 5z^2 – 4mz^3 + 5z^2 – 4nz}$$

$$ \color{Indigo}{({mz^3 – 4 mz^3}) + ({ +3nz – 4nz}) + {( -5z^2 + 5z^2})}$$

$$\color{NavyBlue}{ – 3mz^3 – nz }$$ $$\color{NavyBlue}{ – nz – 3mz^3}$$

d)$$\color{Sepia}{13 x^4 + 9 x – 6x^3}$$

$$\color{Sepia}{8x + 3x^3 – 5x^4}$$

Adição: $$\color{Red}{({ +13x^4 + 9x – 6x^3}) +({+8x + 3x^3 – 5x^4})}$$

$$\color{Red}{ +13x^4 + 9x – 6x^3 + 8x + 3x^3 – 5x^4}$$

$$\color{Red}{({+ 13 x^4 – 5x^4}) + ({+9x + 8x}) + ({-6x^3 + 3x^3})}$$

$$\color{Indigo}{8 x^4+ 17x – 3x^3}$$

$$\color{NavyBlue}{ 17 x – 3x^3 + 8x^4 }$$

Subtração: $$\color{Red}{({13x^4 + 9x – 6x^3}) – ({+8x + 3x^3 – 5x^4})}$$

$$\color{Red}{13x^4 + 9x -6x^3 – 8x – 3x^3 + 5x^4}$$

$$\color{Red}{({13x^4 + 5x^4}) + ({+9x – 8x }) + ({-6x^3 – 3x^3})} $$

$$\color{Indigo}{18x^4 + x – 9x^3} $$

$$\color{NavyBlue}{ x – 9x^3 + 18x^4}$$

e)$$\color{Sepia}{x^2 y^3 + 2xy^2 – xy}$$

$$\color{Sepia}{4xy – 5x^2y^3 + xy^2 -4}$$

Adição: $$\color{Red}{x^2y^3 + 2xy^2 – xy} + {4xy – 5x^2y^3 +xy^2 – 4}$$

$$\color{Red}{x^2y^3 + 2xy^2 – xy + 4xy – 5x^2y^3 + xy^2 – 4} $$

$$\color{Indigo}{x^2y^3 – 5x^2y^3 + 2xy^2 + xy^2 – xy + 4xy -4}$$

$$\color{NavyBlue}{-4x^2y^3 + 3xy^2 + 3xy – 4}$$

Subtração: $$\color{Red}{x^2y^3 + 2xy^2 – xy} – {4xy – 5x^2y^3 +xy^2 – 4}$$

$$\color{Red}{x^2y^3 + 2xy^2 – xy – 4xy + 5x^2y^3 – xy^2 + 4}$$

$$\color{Indigo}{x^2y^3 + 5x^2y^3 + 2xy^2 -xy^2 -xy – 4xy + 4}$$

$$\color{NavyBlue}{6x^2y^3 + xy^2 – 5xy + 4}$$

f)$$\color{Sepia}{-mn^5 + 2m^3n – 6mn}$$ $$\color{Sepia}{5mn – mn^5 – 6m^3n}$$

Adição:

$$\color{Red}{-mn^5 + 2m^3n – 6mn} + {5mn – mn^5 – 6m^3n}$$

$$\color{Red}{-mn^5 + 2m^3n – 6mn + 5mn – mn^5 – 6m^3n}$$

$$\color{Indigo}{-mn^5 – mn^5 + 2m^3n – 6m^3n – 6 mn + 5mn}$$

$$\color{NavyBlue}{-2mn^5 – 4m^3n – mn}$$

Subtração:

$$\color{Red}{-mn^5 + 2m^3n – 6mn} – {5mn – mn^5 – 6m^3n}$$

$$\color{Red}{-mn^5 + 2m^3n – 6mn -5mn + mn^5 + 6m^3n}$$

$$\color{Indigo}{-mn^5 + mn^5 + 2m^3n – 6m^3n – 6mn – 5mn}$$

$$\color{NavyBlue}{ – 4m^3n – 11mn}$$

Multiplicação

Agora vamos ver como se faz para multiplicar. Começamos com a multiplicação de termos algébricos por números e por outros termos.

Exemplo. $$\color{Sepia} {5\cdot {2ax^2}}$$

Basta multiplicar o coeficiente pelo fator 5 e teremos: $${10ax^2}$$

Outro exemplo: $$\color{Sepia}{2x\cdot 3y}$$ Resulta: $$\color{Red}{2\cdot 3}\cdot{x\cdot y}$$ $$\color{NavyBlue}{6xy}$$

Se houver fatores literais de mesma espécie nos termos multiplicados, vamos aplicar a propriedade comutativa da multiplicação (lembrar das propriedades das quatro operações básicas).

$$\color{Sepia}{({5ax^3})\cdot({4ax})}$$

Colocamos os fatores da mesma espécie juntos.

$$\color{Red}{{5\cdot 4}\cdot {a\cdot a} \cdot {x^3\cdot x}}$$ $$\color{Red}{20\cdot{a^{(1+1)}}\cdot{x^{(3 + 1)}}}$$ $$\color{NavyBlue}{20{a^2}{x^4}}$$

Multiplicamos os coeficientes numéricos e as letras tem seus expoentes somados, para resultar o termo final.

E se a multiplicação for de um termo por um polinômio?

Neste caso aplicamos a propriedade distributiva  da multiplicação em relação à adição e subtração. Isto quer dizer que multiplicamos cada termo do polinômio pelo termo que está multiplicando. Para terminar, aplicamos os procedimentos vistos para os termos algébricos.

$$\color{Sepia}{2xy}\cdot {( 3x + 4y)}$$

$$\color{Sepia}{{2xy}\cdot{3x} + {2xy}\cdot {4y}}$$

Efetuando as operações teremos: $$\color{NavyBlue}{6{x^2}y + 8x{y^2}}$$

Outro exemplo.

$$\color{Sepia}{ax^3}\cdot{(2a + 3bx – 5x)}$$

$$\color{Sepia}{{ax^3}\cdot{2a} +{ax^3}\cdot{3bx} + {ax^3}\cdot{(-5x)}}$$

$$\color{Sepia}{2{a^2}{x^3} + 3ab{x^4} -{ 5a}{x^4}} $$

Exercitar é preciso

Efetue as multiplicações de termos e expressões algébricas listadas abaixo.

a) $\color{Indigo}{4a^3} \cdot{2ab^3}$

b) $\color{Indigo}{5x^3y}\cdot{2xy^4}$

c) $\color{Indigo}{3mn^2}\cdot{(2m^2 – 5m^3n^2 + m^3n^2)}$

d) $\color{Indigo}{2x^2z^3}\cdot{(xz^4 + x^3y^2 – 3x^2z^2)}$

e) $\color{Indigo}{abx^3}\cdot{(a^2bx^2 – 3a^3bx + ax^3)}$

Curitiba, 30 de março de 2016. Republicado em 13 de dezembro de 2017.

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732

01.039 – Matemática – Álgebra. Adição e subtração de expressões algébricas.

Adição e subtração de expressões algébricas

Vamos resolver os exercícios deixados no post anterior, para depois vermos esse novo conteúdo.

  1. Reduza às expressões a sua forma mais simples, reunindo os termos semelhantes em um único termo. a) $\color{Sepia}{5ax – 7 by – 3cz + 4by -ax + 6cz}$  $$\color{Red}{{(5ax – ax)} + {(-7by + 4by)} + {(-3cz + 6cz)}}$$  $$\color{NavyBlue}{4ax – 3by + 3cz} $$

b) $\color{Sepia}{mr^{2} + 2 r^{3} – 5mr^{2} – 4r^{3} – 6 r}$

$$\color{Red}{{(mr^2 – 5mr^2)} + {(2r^{3} – 4r^{3})} – 6r}$$ $$\color{Red}{{(1 – 5)}{mr^2} + {(2 -4)}\cdot r^{3} – 6r}$$ $$\color{NavyBlue}{-4mr^2 -2r^3 – 6r} $$

c) $\color{Sepia}{{2\over3}uv + 6xy – 3 x^{2} + {7\over 3} uv -2xy}$

$$\color{Red}{{({2\over 3}{uv} + {7\over 3}{uv})} + {(6xy – 2xy)} – 3x^2}$$ $$\color{Red}{{({2\over 3} + {7\over 3}){uv} } + 4xy  -3x^2}$$

$$ \color{Red}{{9\over3}{uv} + 4xy -3x^2} $$

$$\color{NavyBlue}{3uv +4xy – 3x^2}$$

d) $\color{Sepia}{\sqrt 5{m^3} + pq + 2\sqrt 5{m^3} – 4pq – n}$

$$\color{Red}{{\sqrt 5{m^3} +2\sqrt 5{m^3}} + {pq – 4pq} – n}$$ $$\color{Red}{({\sqrt 5 + 2\sqrt 5}){m^3} -3pq – n}$$ $$\color{NavyBlue}{3\sqrt 5{m^3} -3pq – n}$$

e) $\color{Sepia}{5 abc^2 + 3 abc^2 – a{b^3}c – 6a{b^3} – 4 abc^2 }$

$$\color{Red}{({5abc^2} + {3abc^2} – {4abc^2}) – a{b^3}c – 6a{b^3}}$$

$$ \color{NavyBlue}{4abc^2 – a{b^3}c – 6ab^3}$$

f)$\color{Sepia}{12 {m^2}n + 15 mn^3 – 9{m^2}n + {m^2}n – 4mn^3 }$

$$\color{Red}{(12{m^2}n – 9{m^2}n + {m^2}n) + ({15mn^3 – 4mn^3})}$$ $$\color{NavyBlue}{ 4{m^2}n + 11mn^3}$$

2. Coloque em ordem crescente e depois decrescente os expoentes da variável nas expressões abaixo.

$\color{BrickRed}{2x^4 + 3x + x^2 – 5x^3 + 1}$

Ordem crescente: $$\color{Purple}{1 + 3x + x^2 -5 x^3 + 2x^4} $$

Ordem decrescente: $$\color{Violet}{2x^4 – 5x^3 + x^2 + 3x + 1}$$

$\color{Purple}{7a^6 – 3 a + 5a^3 – 6}$

Ordem crescente: $$\color{Sepia}{ -6 -3a + 5a^3 +7a^6}$$

Ordem decrescente: $$\color{BrickRed}{7a^6 + 5a^3 – 3a – 6}$$

$\color{Indigo}{4i – 3 i^3 – 2 i^4 + 3 i^2}$

Ordem crescente: $$\color{Blue}{ 4i + 3 i^2 – 3i^3 – 2i^4}$$

Ordem decrescente: $$\color{Sepia}{-2 i^4 – 3i^3 + 3i^2 + 4i}$$

Continue lendo “01.039 – Matemática – Álgebra. Adição e subtração de expressões algébricas.”

01.038 – Matemática – Álgebra. Redução de termos semelhantes

Redução de termos semelhantes.

O que significa esse título?

Imagine uma expressão algébrica com vários termos, sendo alguns deles semelhantes. Já sabemos, nesta altura dos acontecimentos, que sempre devemos buscar a expressão mais simples que for possível estabelecer, para facilitar qualquer solução que tenhamos em mente.

Devemos ter em mente que, em uma mesma expressão, não é aceitável que uma mesma letra (símbolo) represente mais de um valor. Por exemplo se $$\begin{align}\color{Sepia}{{x} = 5}\end{align}$$ em um termo de uma expressão algébrica, em todos os lugares em que aparecer a letra $\color{Red}{x}$, ela terá sempre o valor $\color{Red}{5}$. Então, as partes literais de vários termos algébricos semelhantes, terão o mesmo valor. O que distingue os termos entre si, são seus coeficientes. Isto indica quantas parcelas iguais serão somadas ou subtraídas entre si nesta expressão. Desta forma nos é possível substituir vários termos semelhantes por um único termo, cujo coeficiente seja a soma dos coeficientes numéricos daqueles.

Continue lendo “01.038 – Matemática – Álgebra. Redução de termos semelhantes”

01.037 – Matemática, Expressões algébricas, introdução

Expressões algébricas, exercícios.

Vamos resolver os exercícios propostos no post anterior e fazer outros, sobre os assuntos apresentados no mesmo.

  1. Escrever na forma simbólica as sentenças.

a) O triplo de um número somado com o quíntuplo de outro número.

$$\color{Sepia}{{3\cdot x} + {5\cdot y}}$$ ou $$\color{Sepia}{ 3x + 5y} $$

b) Um número adicionado ao dobro de outro.

$$\color{Sepia}{{ m } + {2\cdot n}}$$ ou $$\color{Sepia}{m + 2n}$$

c) O produto de dois números, adicionado ao produto de outros dois.

$$\color{Sepia}{{a\cdot b} + {m\cdot n}}$$ ou $$\color{Sepia}{ab + mn}$$

d) O quíntuplo da soma de dois números.

$$\color{Sepia}{5 \cdot{( u + v)}}$$ ou $$\color{Sepia}{5{(u + v)}}$$

e) A metade do produto de dois números.

$$\color{Sepia}{{i\cdot j}\over {2}} $$ ou $$\color{Sepia}{{1\over 2}{ij}}$$ ou $$\color{Sepia}{{ij}\over 2}$$

f) Um quinto do produto de três números.

$$\color{Sepia}{{x\cdot y\cdot z}\over {5}}$$ ou $$\color{Sepia}{{xyz}\over 5}$$

$$\color{Sepia}{{1\over 5}\cdot{x\cdot y \cdot z}}$$ $$\color{Sepia}{1\over5}{xyz}$$

g) A metade de um número, mais a terça parte de outro.

$$\color{Sepia}{{m\over 2} + {n\over 3}}$$ ou$$\color{Sepia}{{1\over2}\cdot x} + {{1\over 3}\cdot y}$$

h) A diferença entre o triplo de um número e o dobro de outro.

$$\color{Sepia}{{3\cdot a} – {2\cdot b}} $$ ou$$\color{Sepia}{3a – 2b}$$

2. Vamos classificar as expressões algébricas em função do número de seus termos.

a) $$\color{Red}{2ab}$$.

Observando vemos que estamos diante de um produto, sem nenhum sinal de adição ou subtração. É pois uma expressão de um único termo e iremos classificá-la como um monômio.

b) $$\color{Red}{3x + 5y – 2z}$$.

Facilmente vemos que há três termos, separados por sinais de adição (+) e (-). Portanto estamos diante de um polinômio que recebe a denominação específica de trinômio.

c) $$\color{Red}{xy + 3y^{2} + 4z – x}$$.

Este é um polinômio com quatro termos e não temos denominação específica para ele. É um polinômio de quatro termos.

d) $$\color{Red}{{xy}\over3}+{2x^{3}}$$.

Temos agora dois termos algébricos, separados por um sinal (+) e este recebe a denominação de binômio.

Não se deve esquecer que o que separa os termos de um polinômio são os sinais (+) e (-). Multiplicação e divisão, agrupam os números e letras formando um único termo.

3) Vamos separar as partes literais e os coeficientes numéricos dos termos algébricos.

a) $$\color{Red}{abc}$$

Qual é o coeficiente numérico?Não vamos esquecer. O coeficiente que não precisa ser escrito é aquele igual unidade e pode ser positivo ou negativo, dependendo do sinal que houver antes do termo. Se for o primeiro termo de uma expressão o sinal (+) é sempre subentendido. Neste caso o nosso coeficiente numérico é (+ 1) ou simplesmente 1.

A parte literal é o produto das letras $\color{Red}{abc}$.

b) $$\color{Red}{{5\over 3}\cdot xy^{5}}$$.

O coeficiente numérico é a fração $\color{Red}{\frac{5}{3}}$ e a parte literal é o produto:

$$\color{Red}{x\cdot y^{5}}$$

c) $$\color{Red}{{3mn}\over 7}$$.

O coeficiente numérico agora é também uma fração, cujo numerador é 3 e o denominador é 7. Portanto a resposta é $\color{Red}{\frac{3}{7}}$. A parte literal é o produto $\color{Red}{m\cdot n}$

d) $$\color{Red}{\sqrt{5}\cdot x^{3}\cdot y}$$.

Agora nosso coeficiente é

$$\color{Blue}{\sqrt 5}$$

e a parte literal o produto

$$\color{Blue}{x^{3}\cdot y}$$

e) $$\color{Red}{-{{ 6ij}\over 11}}$$.

Agora nosso coeficiente numérico é uma fração e seu sinal é (-), pois o sinal faz parte dele.

$$\color{Blue}{-{6\over 11}}$$

e a parte literal é o produto $\color{Blue}{i\cdot j}$

f) $$\color{Red}{-{3}^{2}\cdot x^{2}\cdot y^{3}}$$.

O coeficiente numérico será

$$\color{Blue}{- {3^{2}}} $$  ou $${-9}$$.

É importante notar que o sinal está diante da potência e não faz parte dela. Equivale a termos escrito

$$\color{Red}{-{(3)}^{2}\cdot x^{2}\cdot y^{3}}$$

A parte literal é $$\color{Red}{x^{2}\cdot y^{3}}$$

g) $$\color{Red}{(-3)^{2}\cdot x^{2}\cdot y^{3}}$$.

Agora o coeficiente numérico é

$$\color{Red} {(-3)^{2}}$$ ou $$\color{Red}{+9}$$ ou simplesmente $$\color{Red}{9}$$.

É muito fácil acontecer neste caso de se cometer o erro de sinal. No caso anterior o sinal (-) estava antes da base da potência, porém, não fazia parte dela. Agora temos a base da potência associada diretamente ao sinal (-). Esta é a diferença e pode ser fatal numa situação de resolução de algum problema, durante uma prova ou coisa assim.

A parte literal é a mesma do exercício anterior

$$\color{Blue}{{x^{2}}\cdot y^{3}}$$

Obs.: Esta dificuldade deixa de ser percebida quando o expoente da potência que compõe o coeficiente numérico for ímpar. Neste caso ela sempre terá o sinal da base. 

4. Vamos identificar termos semelhantes em expressões algébricas e agrupá-los.

a) $$\color{Sepia}{{xy^{2}} +{3\over 2}{x^{2}y} + {2xy} – 5{xy^{2}} – { {xy}\over 5}} $$

Não podemos esquecer. O que torna dois termos semelhantes, é a parte literal. Se houver uma única diferença, eles deixam de ser semelhantes. Assim iremos encontrar $$\color{Red}{({xy^2} – 5{xy^2}) + {({3\over2}{x^2}{y})}+{({2xy} -{{xy}\over 5})}} $$ Os termos semelhantes estão colocados entre parênteses. Temos cinco termos, sendo dois pares deles que são semelhantes entre si e um que é diferente de todos os outros.

b) $$\color{Sepia}{{5x} – 4{xy} + 3{x} – 2{y} + {y} – {xy} – {x}} $$ $$ {{(5x + 3x -x)}+{(-4xy – xy)} + {(-2y + y)}} $$

c) $$\color{Sepia}{a^2}{b^3} – {5\over 8}{a^2} + {4\over 3}{b^5} + 2{a^2}{b^3} – {b^5} + 2{a^2}$$

$$\color{Sepia}{{({a^2}{b^3} + 2{a^2}{b^3})} +{(-{5\over 8}{a^2} +2{a^2})} + {({4\over 3}{b^5} – {b^5})}} $$

05. Identificar o coeficiente numérico dos termos algébricos abaixo.

5.1. $\frac{3}{7}\times ax^{2}$$\Rightarrow$$\color{Red}{\frac{3}{7}}$

5.2.$\sqrt{12}\cdot mn$$\Rightarrow$$\color{Red}{\sqrt{12} = 2\sqrt{3}}$

5.3.$5^{2}\times xy^{3}$$\Rightarrow$$\color{Red}{25}$

5.4.$\sqrt\frac{rs}{5}$$\Rightarrow$$\color{Red}{\sqrt{\frac{1}{5}}}$

5.5. $\frac{ay^{5}}{7}$$\Rightarrow$$\color{Red}{{1}{7}}$

5.6. $2\cdot\frac{bx^{5}}{2z}$$\Rightarrow$$\color{Red}{{2}{2} = 1}$

5.7. $\sqrt[3]{27}\times nu^{7}$$\Rightarrow$$\color{Red}{\sqrt[3]{27} = 3}$

5.8. $\frac{ac^{2}y}{15z}$$\Rightarrow$$\color{Red}{{1}{15}}$

5.9. $ [(3^{2}]^{3}\times a^{3}y^{5}$$\Rightarrow$$\color{Red}{9^{3} = 729}$

5.10. $2(\frac{3}{5})\times m^{3}x^{2}$$\Rightarrow$$\color{Red}{{13}{5}}$

06. Identifique a parte literal dos monômios que abaixo.

6.1.  $2\times \frac{ax}{3y}$$\Rightarrow$$\color{Red}{\frac{ax}{y}}$

6.2. $7\cdot\sqrt{x^{3}y^{2}}$$\Rightarrow$$\color{Red}{x^{3}y^{2}}$

6.3. $\sqrt[5]{7}\cdot{cd^{5}}$$\Rightarrow$$\color{Red}{c\cdot d^{5}}$

6.4. $9\cdot{rsu^{3}}$$\Rightarrow$$\color{Red}{rsu^{3}}$

6.5. $\frac{4}{5}\cdot{a^{2}x^{3}}$$\Rightarrow$$\color{Red}{a^{2}\cdot x^{3}}$

Havendo dúvidas, contate por um dos canais abaixo. Estou sempre pronto a ajudar quem estiver com dificuldades para entender alguma coisa.

Obs.: Não irão aparecer na prática expressões onde haja somente dois termos semelhantes. Esse número é indeterminado. Agrupamos tantos quantos tiverem a parte literal igual. 

Curitiba, 28 de março de 2016. Republicado em 04 de dezembro de 2017.

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732