013.2 – Matemática, aritmética. Radiciação de números naturais II

Aprofundando radiciação

  • Quando fazemos a decomposição do radicando em fatores primos e o exprimimos na forma de uma potência, teremos uma forma equivalente do radical. Por exemplo:
  • $\color{Blue}{\root 3 \of{729} = \root 3 \of {3^6} }$
  • Podemos colocar esse radical na forma de uma potência, onde o expoente é uma fração. O numerador é o expoente do radicando e o denominador é o índice do radical. Teremos então:
  • $\color{Blue}{\root 3 \of {3^6} = 3^{\frac{6}{3}}}$
  • Simplificando a fração, temos: ${3^2 = 9}$
  • A raiz de índice n de um radicando na forma de potência pode ser sempre escrita na forma de uma potência com expoente fracionário e vice-versa. Se temos uma potência de expoente fracionário, podemos escrevê-la na forma de radical, cujo índice é o denominador do expoente e o numerador é o expoente da base.
  • OBS.: quando o índice é 2, dizemos que a raiz é quadrada e quando o índice é 3, a raiz é cúbica. O índice 2 pode ser subentendido, uma vez que não faz sentido falar em raiz de índice 1(hum).
  • Alguns exemplos.
    • $\color{Blue}{\sqrt {7^5} = 7^{\frac{5}{2}}}$
    • $\color{Blue}{\sqrt {256} = \sqrt {2^8} = 2^{\frac{8}{2}} = 2^4 = 16}$
    • $\color{Blue}{\sqrt 5 = 5^{\frac{1}{2}}}$
    • $\color{Blue}{\root 3 \of {2^6} = 2^{\frac{6}{3}} = 2^2 = 4}$
    • $\color{Blue}{\root 4 \of{9^2} = 9^{\frac{2}{4}} = 9^{\frac{1}{2}} = \sqrt {9} = 3} $
    • $\color{Blue}{\root 5 \of {2^{10}} = 2^{\frac{10}{5}} = 2^2 = 4}$

O exemplo 5 mostra que podemos dividir o índice e o expoente pelo mesmo número, de modo que o radical fique simplificado. Assim podemos fazer:

  • $\color{Blue}{\root 6 \of {3^2} = \root 3 \of 3 = 3^{\frac{1}{3}}}$
  • $\color{Blue}{\root 4 \of {5^6} = \sqrt {5^3} = 5^{\frac{3}{2}} = \sqrt{5^2\cdot 5} = 5\cdot\sqrt{5} } $
  • Alguns exemplos para treinar. Vamos a eles.
    • $\color{Brown}{\root 12 \of {64} = ?}$
    • $\color{Brown}{\root 10 \of {25} = ?}$
    • $\color{Brown}{\root 18 \of {256} = ?}$
    • $\color{Brown}{\root 9 \of {125} = ?}$
    • $\color{Brown}{\root 16 \of {128} = ?}$
    • $\color{Brown}{\root 14 \of {144} = ?}$
    • $\color{Brown}{\root 3 \of {512} = ?}$
    • $\color{Brown}{\root 4 \of {49} = ?}$
    • $\color{Brown}{\root 3 \of {32} = ?}$

Experimente criar alguns. Sugiro começar calculando as potências e depois fazer o processo contrário. Não importa que você saiba a resposta antecipadamente. O objetivo é exercitar. Ajuda a gravar os valores das potências mais comuns e suas raízes de diferentes índices. Não é nada desprezível conhecer alguns desses valores de memória. Ajuda muito em alguns momentos decisivos.

Essa memória me salvou uma questão numa prova no tempo de faculdade. Demorei a encontrar o caminho da resolução e quando faltavam apenas alguns segundos para o final do tempo, cheguei a raiz quadrada do número 1296. Para minha sorte, na noite anterior eu havia resolvido e determinado essa raiz com os meus alunos no ginásio, na 5ª série e não precisei calcular. Foi o tempo de escrever a resposta e entregar a prova. Nunca mais esqueci a resposta, que é 36.

Não é proibido decorar alguns, não que deva ser uma preocupação essencial, mas em muitos casos ajuda um bocado.

Até outro momento, com mais algumas coisas sobre o assunto.

Obs.: Em caso de dúvidas, não hesite em pedir ajuda. Para isso são os canais que informo logo abaixo. Também pode perguntar sobre outros assuntos que ainda não constem do blog. Esteja à vontade. 

Curitiba, 09 de novembro de 2018

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732

013.1 – Matemática, aritmética. Radiciação de naturais.

O caminho inverso. – Radiciação.

 

Assim como em outras situações, estamos vendo que, a cada nova operação matemática que aprendemos, logo depois aparece outra, que faz o caminho contrário. E não seria diferente com a potenciação.

  • Vamos pegar um número, potência de 3. Esse número vai ser 243. Vamos decompor em seus fatores, para sabermos qual é o expoente ao qual foi elevada a base 3, para encontrar 243.
  • O número é ímpar e por isso não divisível por dois ou seus múltiplos. Para seguir somamos os algarismos que formam o número $2 + 4 + 3 = 9$ que é divisível por $3$

  • Fizemos cinco divisões sucessivas por $3$, até resultar quociente $1$. Dessa forma temos que $\color{Blue}{3^5 = 243}$
  • Então podemos representar:
  • $\color{Blue}{243 = 3^5 = 3\times3\times3\times3\times3} $

A base 3, elevada ao expoente 5 e obtemos a potência 243.

  • Neste caso dizemos que 3 é a raiz quinta de 243.

Essa operação inversa se denomina Radiciação  e se representa na forma de um radical, onde temos:

  • Radicando é número cuja raiz estamos determinando.
  • Índice é o número que indica o expoente ao qual deve ser elevada a raiz para resultar o radicando.
  • Raiz é a base da potenciação que resulta no radicando.

Assim, usando o símbolo:\[\bbox[4px,border:2px solid olive]{\color{Blue}{ \root 5 \of {243} = 3}}\]

Continue lendo “013.1 – Matemática, aritmética. Radiciação de naturais.”

011.3 – Matemática, aritmética. Potenciação de potências e expoente exponencial

Buscas na internet.

Pesquisando na internet, descobri que nos últimos dias a procura pelo assunto potenciação, por parte dos internautas, aumentou quase 100%. Isso significa que estou atacando um dos assuntos mais procurados. Vamos seguir mais um pouco. Apresentar mais uns detalhes sobre o assunto.

  • Vamos ver como se faz uma multiplicação de potências iguais.
  • Assim: $\color{Blue}{3^2\times 3^2\times 3^2\times 3^2 = (3^2)^4}$
  • Temos agora uma potência de potência, isto é, três elevado ao quadrado, elevado a quarta potência.
  • Vamos aplicar no começo, a regrinha da multiplicação de potências de mesma base.
  • Teremos:$\bbox[4px,border:2px solid olive]{\color{Blue}{3^{(2+2+2+2)} = 3^8}}$

Se observarmos bem, os expoentes na expressão $\color{Blue}{{[(3)^2]}^4}$, vemos que, se multiplicarmos os expoentes $\color{Blue}{2\times 4= 8}$ ou seja a soma dos expoentes das potências iguais.

Dessa forma pode-se afirmar que:

  • “Para elevar uma potência a outra potência, basta conservar a base e multiplicar os expoentes”.
  • Vamos exercitar um pouco?
    • $\color{Blue}{[(4)^2]^3 = 4^{(2\times 3)} = 4^6}$
    • $\color{Blue}{[(7)^3]^3 = 7^{(3\times 3)} = 7^9}$
    • $\color{Blue}{[(11)^4]^2 = (11)^(4\times 2) = (11)^8}$
    • $\color{Blue}{{[(5)^4]^5} = 5^{(4\times 5)} = 5^{20}}$

Fica muito simples perceber que a operação potenciação apresenta bem mais possibilidades de aplicações úteis, do que meramente substituir uma multiplicação por uma expressão mais simples, mais curta. Começam a pintar várias novidades. O que vimos até aqui é apenas um pequeno vislumbre do que é possível. Mas vamos devagar. Um degrau de cada vez.

Vamos recordar o que já vimos até aqui?

  • Transformar potências em multiplicações de fatores iguais.
    • $\color{Blue}{7^3 = ?}$
    • $\color{blue}{5^2 = ?}$
    • $\color{Blue}{8^6 = ?}$
    • $\color{Blue}{3^4 = ?}$
    • $\color{Blue}{2^5 = ?}$
  • Escrever na forma de potências as multiplicações.
    • $\color{Blue}{3\times3\times3\times3\times5\times5\times5 = ?}$
    • $\color{Blue}{5\times5\times5\times5\times5\times5 = ?}$
    • $\color{Blue}{4\times4\times4\times4\times4\times4\times4\times4 = ?}$
    • $\color{Blue}{{11}\times{11}\times{11}\times{11}\times{11} = ?}$
    • $\color{Blue}{7\times7\times7\times7 = ?}$
  • Escrever o resultado das potências.
    • $\color{Blue}{3^3 = ?}$
    • $\color{Blue}{5^3 = ?}$
    • $\color{Blue}{2^5 = ?}$
    • $\color{Blue}{7^1 = ?}$
    • $\color{navy}{6^0 = ?}$
    • $\color{navy}{(500)^0 = ?}$
    • $\color{navy}{(50)^1 = ?}$
  • Efetuar as multiplicações de potências de mesma base.
    • $\color{Blue}{{3^2}\times{3^4}\times{3^2}\times{3^3}\times{3^5} = ?}$
    • $\color{Blue}{{5^4}\times{5^3} = ?}$
    • $\color{Blue}{{4^0}\times{4^3}\times{4^5} = ?}$
    • $\color{Blue}{{6^2}\times{6^3}\times{6^3}\times{6^2} = ?}$
    • $\color{Blue}{{7^5}\times{7^1}\times{7^2} =?}$
  • Efetuar as divisões das potências de mesma base.
    • $\color{Blue}{{(5^8)}\div {(5^3)} = ?}$
    • $\color{Blue}{{(13)^5}\div{(13)^2} = ?}$
    • $\color{Blue}{{(4^7)}\div{(4^7)} = ?}$
    • $\color{Blue}{{(6^3)}\div{(6^1)} = ?}$
    • $\color{Blue}{{(8^6)}\div{(8^5)} = ?}$
  • Vamos dar mais um passinho?
    • E se o expoente for uma potência?
    • $\color{Blue}{{{5^3}^2} = 5^9}$
  • Trata-se agora de um expoente exponencial. Antes de elevarmos a base ao expoente, precisamos efetuar a potência desse expoente. Ou seja, precisamos efetuar o $\color{Brown}{3^2= 9}$ e depois elevar o 5 à nona potência. Teremos então: $\color{Brown}{5^{9}}$

Note que se multiplicássemos os expoentes ($\color{Brown}{3\times 2 =6}$, teríamos $\color{Brown}{5^{3\times 2} = 5^6}$, que é totalmente diferente. Notamos que a coisa fica um pouco mais complexa. Portanto cuidado. Potência de potência não é o mesmo que potência com expoente exponencial. Felizmente o uso dessa forma é menos comum, do que a primeira. Um pouco de exercício faz bem, né!

  • Efetue as potências indicadas.
    • $\color{Blue}{{{7^5}^2} = ?}$
    • $\color{Blue}{{{5^3}^1} = ?}$
    • $\color{Blue}{{{6^4}^3} = ?}$
    • $\color{Blue}{{{8^3}^4} = ?}$
    • $\color{Blue}{{{9^2}^3} = ?}$
  • Transforme os expoentes das potências em exponenciais.
    • $\color{Blue}{3^{32} = ?}$
    • $\color{Blue}{7^{243} = ?}$
    • $\color{Blue}{(13)^{27} = ?}$
    • $\color{Blue}{5^{625} = ?}$
    • $\color{Blue}{9^{256} = ?}$
  • Adendo: Um leitor me enviou a seguinte pergunta, ou melhor questão: Realizar a divisão que ele encontrou num livro ou apostila e não entendeu como resolver.
  • Exercício de divisão
    Exercício de divisão
  • A divisão apresentada é a divisão de duas potências. Seria assim:
  • $\color{navy}{{{{{{2^3}^2}^1}^8}^7}^6}\div {{{{{{4^2}^2}^8}^0}^9}^6}$
  • Vemos uma sucessão de potências em número de 6 (seis). À primeira vista parece algo difícil de resolver. Se fôssemos desenvolver tudo, iriamos fazer uma montanha de cálculos desnecessários. Não podemos esquecer que a matemática tem alguns atalhos que nos levam à resposta num piscar de olhos. Aquele problema gigante, se resolve num clic.
  • Acompanhem o raciocínio. Na potência dividendo, temos no quarto expoente de cima para baixo o número 1(um). Isto significa que iremos elevar 1(um) ao expoente que existir acima dele e o resultado só pode ser 1(um). Continuando vamos ter:
  • $\color{Blue}{2^1 = 2}$
  • Para terminar temos $\color{Blue}{3^2 = 9}$
  • Reduzimos o dividendo à potência $\color{Blue}{2^9}$
  • No divisor vamos encontrar na terceira posição, do último expoente para baixo. Sabemos que qualquer expoente para 0(zero), resulta igual a 0.
  • O próximo expoente é 8, e vamos ter $\color{Blue}{8^0 = 1}$
  • Na sequência temos o expoente 2 e fica $\color{Blue}{2^1 = 2}$
  • Terminamos com $\color{Blue}{2^2 = 4}$
  • Passamos a ter $\color{Blue}{4^4} = {(2^2)}^4 = {2^{2×4}} =2^8 $
  • Efetuando a divisão $\color{Blue}{{2^9}\div{2^8} = 2^{9-8} = 2^1 = 2}$.
  • Este resultado comprova que a resposta indicada na figura é a correta.
  • Andamos mais um passo. Se você for um dos que procuraram pelo assunto potenciação na internet e tiver interesse em aprofundar o assunto, entre em contato comigo nos endereços que constam abaixo do artigo. Estou a disposição para orientar e tirar suas dúvidas. Legal?

Curitiba, 05 de novembro de 2018.

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celulares: (41) 99805-0732

011.2 – Matemática, aritmética. Operações com naturais – Potenciação. Operações com potencias.

Operações com potências

Vamos começar por um ponto bem simples.

  • Seja: $\color{Brown}{3^5 \times 3^2 = 243 \times 9 = 2187}$
  • Mas podemos fazer: $\color{Brown}{(3\times 3\times 3\times 3\times 3)\times (3\times 3) = ?}$

Note que agora temos uma multiplicação de $\color{Brown}{7}$(sete) fatores iguais e podemos escrever então:

  • \[\bbox[4px,border:2px solid olive]{\color{Brown}{3^5 \times 3^2 = 3^{(5+2)} = 3^7}}\]

Isso nos mostra que, quando multiplicamos potências de mesma base, podemos somar os expoentes e deixar o resultado na forma exponencial.

  • “Para resolver um produto de potências de mesma base, somamos os expoentes e conservamos a base”.

Não vou usar aqui letras para substituir os números, pois ainda não falei de álgebra. Estou tratando apenas de aritmética, onde não entram símbolos alfabéticos.

  • Vamos exercitar?
  • $\color{Brown}{6^2\times6^4 =?}$
  • $\color{Brown}{4^3\times4^2\times4^5=?}$
  • $\color{Brown}{2^1\times2^2\times2^2\times2^3=?}$
  • $\color{Brown}{5^3\times5^4\times5^2=?}$
  • Obs.: eu coloquei de propósito no terceiro exercício uma potência de expoente $\color{Blue}{1}$. Por que isso? Existe uma demonstração para provar isso, mas trataremos disso daqui a pouco. Mas se o expoente é $\color{Blue}{1}$, significa que teríamos uma multiplicação de $\color{Blue}{1}$(um) fator igual a $\color{Brown}{2}$. Então o seu resultado só poderia ser dois. Por extensão, todos os números escritos sem expoente, tem automaticamente como expoente o número $\color{Brown}{1}$, subentendido. De maneira que não é preciso escreve-lo, pois sabemos que ele existe. Em outro momento vamos demonstrar quanto vale uma potência de expoente $\color{Brown}{0}$ (zero).
  • E se em em vez de multiplicar potências de mesma base, estivermos dividindo essas potências?
  • Assim: $\color{Brown}{2^7 : 2^5 = 128 : 32 = 4}$

Podemos notar que $\color{Brown}{4 = 2^2}$.

  • Olhando bem para o resultado, vemos que esse último expoente é igual a $\color{Brown}{(7 – 5)}$, ou seja a diferença entre os expoentes do dividendo e do divisor. Então podemos resolver a divisão de potências de mesma base, fazendo a subtração dos expoentes (dividendo – divisor) e conservar a base. Vamos ver outros exemplos.
  • $\color{Brown}{6^5 : 6^3 = 6^{(5-3)} = 6^2}$
  • $\color{Brown}{7^8 : 7^5 = 7^{(8-5)}=7^3}$
  • $\color{Brown}{3^{12} : 3^7 = 3^{(12 – 7)} = 3^5}$

É possível perceber que a divisão dessa forma fica facilitada. Em lugar de multiplicarmos os números, encontrar o resultado das potências e depois dividir, para transformar novamente em potência, fazemos apenas uma subtração e o resultado aparece de forma simples.

  • Para dividir potências de mesma base, conservamos a base e efetuamos a subtração do expoente do dividendo menos o do divisor”.

Assim fica fácil. São os primeiros degraus, antes dos outros que vem a seguir.

Falei antes que iria demonstrar por que os números com expoente $\color{brown}{1}$, são iguais à base. É bem fácil.

  • $\bbox[4px,border:2px solid olive]{\color{Brown}{3^5 : 3^4 = 3^{(5-4)} = 3^1}}$
  • Vamos desenvolver as potências:
    • $\color{Brown}{(3\times 3\times 3\times 3\times 3) : (3\times 3\times 3\times 3) = 243 : 81  = 3}$

    A divisão feita na forma de potências resultou $\color{Brown}{3^1}$ e com os números representados pelas potências o resultado foi $\color{Brown}{3}$. Será que pode mudar o valor do resultado, pelo simples fato de representar os números de forma diferente?

    É claro que não. Isso invalidaria uma das fórmulas de cálculo. E então podemos dizer que $\color{Brown}{3^1 = 3}$. Isso se aplica a todos os números. O número escrito sem expoente, sempre se subentende que ele têm por natureza o expoente $\color{Brown}{1}$. Certo?

    Potências de expoente igual a unidade, tem valor igual à base”.

    Agora vamos ver outro caso

    • $\color{Brown}{6^2 : 6^2 = 6^{(2 -2 )} = 6^0}$

    Desenvolvendo as potências:

    • $\color{Brown}{(6\times 6) : (6\times 6) = 36 : 36 = 1}$

    O resultado das duas formas de fazer a divisão deu diferente. Já vimos que isso não pode acontecer. Qual é a conclusão?

    • $\bbox[4px,border:2px solid olive]{\color{Brown}{6^0=1}}$

    Novamente isso se aplica a qualquer número. Se o seu expoente for igual a $\color{Brown}{0}$ (zero), o valor do número é $\color{Brown}{1}$.

    • Qualquer potência de expoente $0$(zero) tem valor igual a unidade”.
    • Uns exercícios para treinar.

      • Efetue as multiplicações de potências de mesma base.
        • $\color{Blue}{7^3\times7^2\times7=?}$
        • $\color{Blue}{5^2\times5^4\times5^3 =?}$
        • $\color{Blue}{8^7\times8^3=?}$
        • $\color{Blue}{3^4\times3^2=?}$
      • Efetue as divisões de potências de mesma base.
        • $\color{Blue}{(12)^5 : (12)^2 =?} $
        • $\color{Blue}{(15)^6:(15)^2=?}$
        • $\color{Blue}{9^4:9^1=?}$
        • $\color{Blue}{8^5:8^5=?}$
        • $\color{Blue}{7^4:7^3=?}$
        • $\color{Blue}{3^5 : 3^4 =?}$
        • $\color{Blue}{(11)^3 : (11)^3 = ?}$
        • $\color{Blue}{(45)^7 : (45)^7 = ?}$
        • $\color{Blue}{5^7 : 5^6 = ?}$

    Se for de seu desejo, é fácil criar novos exercícios semelhantes. Os números estão à sua disposição. Eles não reclamam, não cobram nada mais do que atenção e raciocínio.

    Obs.:Em caso de dúvida, faça contato para esclarecer e sanar sua dificuldade, usando um dos meios fornecidos logo abaixo. Mesmo que a dificuldade seja de outra ordem, dentro de matemática, talvez eu possa ajudá-lo. Não espere a dúvida ficar velha, de cabelos brancos e criar problemas. 

    Curitiba, 05 de novembro de 2018

    Décio Adams

    [email protected]

    [email protected]

    [email protected]

    www.facebook.com/livros.decioadams

    www.facebook.com/decio.adams

    www.facebook.com/decioadams.matfisonline

    @AdamsDcio

    Telefone: (41) 3019-4760

    Celulares e WhatsApp: (41) 99805-0732

011.1 – Matemática, aritmética. Potenciação.

Não é que eu estava esquecendo!

  • Estão lembrados que a multiplicação é uma soma de parcelas iguais?

E se tivermos uma multiplicação de fatores iguais? Será que podemos pensar em uma forma de escrever isso de maneira mais resumida?

  • Por exemplo:   $\bbox[4px,border:2px solid olive]{\color{navy}{3\times 3\times 3\times 3\times 3\times 3 = ?}}$
  • Muito simples. Basta irmos multiplicando o três tantas vezes quantas estiver indicado. Mas será que não tem outro jeito?
  • Há muito tempo ( pesquisei e não encontrei quando isso aconteceu) alguém olhou para essas expressões e pensou em uma maneira de encurtar a “tripa”. Como?
  • Foi criada a Potenciação, também conhecida como Exponenciação ou forma exponencial. Basta escrever o número de fatores iguais, um pouco acima, do lado direito daquele número que é repetido. Então como fica a expressão aí de cima?

\[\bbox[4px,border:2px solid olive]{\color{brown}{3^6}}\]

  • Nessa forma de escrever, temos um número na forma exponencial. Lemos: três elevado a sexta potência, ou três elevado a seis.

Continue lendo “011.1 – Matemática, aritmética. Potenciação.”

010.4 – Matemática, aritmética. Divisão e suas propriedades. Resumo das propriedades das operações.

Divisão – Propriedades

A divisão, de modo semelhante à multiplicação, da qual é a operação inversa, poderia ser representada como uma subtração sucessiva de termos. Por exemplo:

  • $\color{navy}{30 : 6 = 5}$
  • $\color{navy}{30 – 6 – 6 – 6 – 6  – 6 = 0}$

Subtraímos do dividendo $\color{navy}{30}$(trinta) cinco vezes o divisor $\color{navy}{6}$ e sobrou $0$(zero). Isso por ser uma divisão exata. O número de subtrações sucessivas é igual ao quociente. Se a divisão não for exata, iremos ter no final um resto menor que o divisor. Vejamos.

  • $\color{navy}{47 : 7 = 6}$, sobrando resto $\color{navy}{5}$.
  • $\color{navy}{47 – 7 – 7 – 7 – 7 – 7 – 7 = 5}$ $\Leftrightarrow$ $\color{navy}{(7 + 7 + 7 + 7 + 7 + 7 + 5 = 47})$

Subtraímos seis vezes o divisor $\color{navy}{7}$ do dividendo $\color{navy}{47}$ e na última subtração, ficou sobrando o resto $\color{navy}{5}$. Para obter novamente o dividendo, somamos seis parcelas iguais a $\color{navy}{7}$ e no final também o resto $\color{navy}{5}$.

Podemos facilmente deduzir que a divisão não goza de todas as propriedades da multiplicação, assim como a subtração não goza das propriedades da adição. O que foi dito acima, vale para as divisões exatas, como vimos. Se sobrar resto, não obtemos um resultado inteiro. Esse assunto será estudado ao abordar o conjunto dos números racionais (fracionários).

  • Propriedade distributiva: Vejamos a seguinte situação.
  • $\color{navy}{(15 + 18)\div 3 = 33\div 3 = 11}$
  • $\color{navy}{(15\div 3) + (18\div 3) = 5 + 6 = 11}$
  • Neste caso, fizemos uma distribuição do divisor pelos termos da adição que forma o dividendo.
  • $\color{navy}{ (55 – 33)\div 11 = 22\div 11 = 2}$
  • $\color{navy}{(55\div 11) – (33\div 11) = 5 – 3 = 2}$
  • Fizemos o mesmo com a subtração e podemos dizer que o divisor é distributivo em relação aos termos da soma ou subtração.
  • Se colocarmos na ordem inversa, como por exemplo $\color{navy}{64\div (12 + 4) = 64\div 16 = 4}$. Não podemos fazer a distribuição do dividendo pelos dois termos do divisor. $\color{navy}{(64\div 12) + (64\div 4) = \frac{64}{12} + 16 \not= 4}$.
  • Isso nos mostra que a propriedade distributiva na divisão, se aplica ao divisor que pode dividir os termos da adição ou subtração, sem alterar o resultado. Já com o dividendo não acontece o mesmo. Por isso não posso afirmar que a divisão goza da propriedade distributiva em relação à adição e subtração, como acontece na multiplicação.
  • Elemento neutro – outro dia uma leitora dessa matéria me perguntou por que eu considerei que a divisão não goza do elemento neutro e afirmou que ela o considerava como sendo o número $1$. Analisei e foi preciso dar razão a ela, mas fazendo a ressalva, como aliás já fiz também para a multiplicação, de que isso só vale com o número natural $1$, quando ele é o divisor. O que só vem confirmar a afirmação de que esta propriedade não se aplica na divisão.

Resumo das propriedades:

Adição:

  • Comutativa – a ordem das parcelas não altera a soma.
  • Associativa – podemos substituir duas ou mais parcelas pela sua soma (associação), sem alterar a soma final.
  • Elemento Neutro – adicionar uma parcela igual a zero a uma soma, não altera o resultado. Zero é o Elemento neutro da adição.
  • Propriedade do fechamento – a adição sempre é possível no conjunto dos números naturais. A soma de dois números naturais, é igual a outro número natural.

Multiplicação:

  • Comutativa – a ordem dos fatores não altera o produto.
  • Associativa – podemos substituir dois ou mais fatores pelo seu produto (associação), sem alterar o produto final.
  • Elemento Neutro – multiplicar por 1(hum) não altera o produto. O número 1(hum) é o elemento neutro da multiplicação.
  • Distributiva em relação a adição e subtração – a multiplicação de um fator por uma soma ou subtração, pode ser feita distribuindo o fator por cada um dos termos e depois realizar a adição ou subtração entre os resultados. O produto final será o mesmo.
  • Fechamento:  Vimos que a multiplicação de dois números naturais é sempre possível, ou seja, um número natural multiplicado por outro, resulta num produto que é um número natural.

Subtração:  Não goza das propriedades comutativa, associativa,elemento neutro e fechamento no conjunto dos números naturais.

Divisão: Não goza das propriedades comutativa, associativa. O elemento neutro é o número natural $1$ quando colocado como divisor, jamais como dividendo. Isso equivale a dizer que a propriedade não se aplica. A propriedade distributiva em relação a adição e subtração, funciona apenas com o divisor. Com o dividendo não funciona. Na prática não devemos usar essa propriedade para a divisão.

Curitiba, 19 de outubro de 2018

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celulares: (41) 99805-0732

067.11 – Matemática, álgebra. Cologaritmo e antilogaritmo.

Logaritmos

Cologaritmo

Vimos que se ${0 < a ≠ 1}$ e ${b > 0}$, denominamos logaritmo de ${b}$ na base ${a}$ ao expoente de ${a}$ que resulta na potência igual a ${b}$.

Já o cologaritmo é o oposto ou simétrico do logaritmo. Assim: ${colog_a{b} = – log_a{b}}$

${colog_a{b} = (-1)\cdot{log_a{b}}} ⇔ {colog_a{b} = log_a{b}^{-1}}$

${colog_a{b} = log_a{1\over b}}$

Fica demonstrado que o cologaritmo de um número em determinada base é igual ao logaritmo de seu inverso na mesma base.

Continue lendo “067.11 – Matemática, álgebra. Cologaritmo e antilogaritmo.”

067.10 – Matemática, álgebra. Equações logarítmicas

Equações logarítmicas

Há várias formas de equações envolvendo logaritmos. Vamos ver o primeiro deles.

I) Igualdade entre logaritmos de mesma base, como

${log_a{x} = log_a{y}}  ⇔ { x = y}$

Exemplo.

${log_5\underbrace{{(2x + 4)}} =  log_5\underbrace{{(3x + 1)}}}$

${2x + 4 = 3x + 1} ⇔ {2x – 3x = 1 – 4}$

${-x = -3} ⇔ {-x\cdot{(-1)} = -3\cdot{(-1)}}$

${x = 3} ⇔ {S = \{3\}}$

Continue lendo “067.10 – Matemática, álgebra. Equações logarítmicas”

067.9 – Matemática, álgebra. Condições de existência dos logaritmos.

Estudo da existência dos logaritmos.

 

Vimos no início do nosso estudo dos logaritmos que

${log_a{b} = x}$, tem como condição de existência que tenhamos:

${a > 0,  a ≠ 1}$ ⇔ ${0 < a ≠ 1}$

${b > 0}$

Se estas condições não forem satisfeitas o logaritmo não existe. Isso nos leva a um tipo de expressão em que precisamos analisar uma ou mais situações e estabelecer a condição de existência daquele(s) logaritmo(s) especificamente.

Continue lendo “067.9 – Matemática, álgebra. Condições de existência dos logaritmos.”

067.8 – Matemática, álgebra. Expressões logarítmicas.

Expressões logarítmicas.

Vamos exercitar.

 Desenvolver as expressões logarítmicas.

a) ${log_a{({m\cdot n})^v}}$

O expoente do logaritmando, irá multiplicar o logaritmo

${log_a{({m\cdot n})^v}} = {v\cdot{log_a{({m\cdot n})}}}$

Aplicando a propriedade da multiplicação, transformamos o logaritmo da multiplicação e adição dos logarítmos.

${v\cdot({log_a{m} + log_a{n}})} = v\cdot{log_a{m}} + v\cdot {log_a{n}}$

b)${log_x{({{p}\cdot {q}\over {r}})^u}}$

O expoente do logaritmando colocamos novamente multiplicando o logaritmo.

${ u\cdot{log_x{({{p}\cdot{q}\over{r}})}}} = {u\cdot{[log_x{({p}\cdot{q}) – log_x{r}]}}} = {u\cdot{[log_x{p} + log_x{q} – log_x{r}]}}$

Continue lendo “067.8 – Matemática, álgebra. Expressões logarítmicas.”