01.052 – Matemática, Álgebra, Equação do segundo grau: Discriminante.

Equação do segundo grau com e sem solução

Vamos lembrar da Fórmula de Bhaskara e analisar com atenção uma parte dela. Vamos deter nossos olhos na parte que está sob o sinal de raiz quadrada, precedido dos sinais $\pm$.

$$\color{Indigo}{ x = {{-b \pm\sqrt{b^2 – 4ac}}\over 2a}}$$

Nossa atenção deve ser especial sobre essa parte da fórmula, pois sabemos do estudo das raízes de números relativos que, as raízes de índice par só existem para os números positivos e que isso se deve ao fato de só existirem números reais positivos, resultantes de qualquer outro número real elevado a um expoente par.

Como consequência, se a expressão existente sob o radical tiver um valor negativo, não vai haver solução da equação no conjunto dos números reais. Essa expressão é denominada discriminante e costuma ser representada pela letra grega Δ. Assim, teremos:

$$\color{Orchid}{ \Delta = b^2 – 4ac}$$

Continue lendo “01.052 – Matemática, Álgebra, Equação do segundo grau: Discriminante.”

01.051 – Matemática, Álgebra, Equação do segundo grau.

Equação do segundo grau

Vimos a equação do primeiro grau, onde a incógnita (variável), tem o expoente igual a unidade. Agora é a vez de termos uma igualdade algébrica, com uma incógnita e o expoente máximo é igual a 2. A forma algébrica dessa equação é formada por um trinômio, igualado a zero. Assim:

$$\color{NavyBlue}{ ax^2 + bx +c = 0} $$

As letras a, b c, substituem as constantes, isto é, os coeficientes numéricos. Assim, temos um termo com expoente 2, um termo com expoente 1 e o terceiro termo, chamado de termo independente, pois não contém variável, onde consideramos o expoente da mesma igual a zero (0).

Um pouco de história.

A equação do segundo grau é conhecida, em sua forma primitiva há milhares de anos. Há notícias dela nos registros da época dos babilônios. Posteriormente vários matemáticos da Índia deixaram trabalhos relacionados com ela. Hoje usamos na resolução das equações do segundo grau uma fórmula, que leva o nome de um desses matemáticos. É conhecida como Fórmula de Bhaskara. Somos levados a acreditar que foi ele quem desenvolveu a fórmula, porém ela já existia. Ele apenas lhe deu a forma final, ou seja, ele a aprimorou, dando-lhe a forma aproximada do que usamos hoje. Foi no fim da Idade Média, começo do Renascimento que ela recebeu os retoques finais, ficando como é hoje. Vejamos o que é afinal essa fórmula.

$$\color{Sepia}{{x} = { – b \pm \sqrt{b^2 – 4ac}\over2a}}$$

Na hora de determinar as soluções de qualquer equação do segundo grau, bastará usar esta fórmula e teremos como resultado dois valores, o que é uma característica dessas equações. O número de raízes (soluções) corresponde ao numeral indicativo do grau.

Mas cabe uma pergunta, que provavelmente, pelo menos alguns, estarão se fazendo nesse momento. Como se chega a essa fórmula, partindo da forma geral da equação? Será que alguém, em uma linda noite de luar, olhou para as estrelas e, num lampejo de clarevidência, teve uma iluminação, sentou-se e escreveu a fórmula? Isso seria uma linda fábula infantil, que, nos dias de hoje, até as crianças teriam dificuldade em aceitar. E logicamente não foi assim. Provavelmente o raciocínio foi sendo aperfeiçoado ao longo de gerações, até que se deparou finalmente com essa forma que usamos hoje, o que ocorreu depois da era renascentista.

Vamos ver como se pode mostrar que a fórmula é realmente a solução para as equações do segundo grau. É necessário usar alguns artifícios e aplicar o raciocínio algébrico, aritmético até chegar ao resultado final. Começamos por eliminar o termo independente no primeiro membro, pela adição de um termo (- c) aos dois membros da equação. Assim teremos:

$$\color{Sepia}{ax^2 + bx + c – c = -c }$$

$$\color{Sepia}{ax^2 + bx = -c }$$

Se multiplicarmos todos os termos da igualdade por um determinado valor, a igualdade permanece. Não podemos introduzir elementos estranhos na expressão e por isso vamos multiplicar tudo por $${4a}$$, o que nos leva à seguinte expressão.

$${(ax^2 + bx)}\cdot{(4a)} = {(-c)}\cdot{(4a)} $$

$${ 4a^2x^2 + 4abx} = -4ac $$

Observemos o primeiro membro da equação, nesse ponto. Podemos notar que está faltando apenas um termo $ b^2$ para resultar em um trinômio quadrado perfeito, isto é, o quadrado da soma de dois números. Então podemos chegar a isso, se adicionarmos esse termo aos dois membros da equação e teremos:

$${4a^2x^2 + 4abx + b^2} = {b^2 – 4ac}$$

Se o primeiro membro agora é um trinômio quadrado perfeito, podemos substituí-lo pelo quadrado da soma correspondente. Basta extrairmos a raiz quadrada dos termos que são quadrados perfeitos e poderemos escrever:

$${4a^2x^2 + 4abx + b^2} = {(2ax + b)}^2 $$

Agora podemos substituir na equação do segundo grau o primeiro membro por esse quadrado da soma.

$${(2ax + b)}^2 = b^2 – 4ac $$ Na continuação, extraímos a raiz quadrada de ambos os membros, o que resulta assim:

$$\sqrt{{(2ax + b)}^2} = \sqrt{b^2 – 4ac} $$

Note que no primeiro membro, temos a raiz quadrada de um binômio elevado ao quadrado, o que nos permite cancelar o índice com o expoente, isto é, resta apenas o binômio, sem o expoente nem o radical. Fica assim:

$$ 2ax + b = \sqrt{b^2 – 4ac} $$

Se somarmos aos dois membros o simétrico do termo b, teremos:

$$ 2ax + b – b = -b\pm\sqrt{b^2 – 4ac} $$

$$ 2ax = – b\pm\sqrt{b^2 – 4ac} $$

Dividindo ambos os membros por (2a), estaremos terminando a demonstração.

$${2ax\over 2a} = {{-b\pm\sqrt{b^2 – 4ac}}\over 2a}$$

$$\color{Orchid}{{x} ={{-b^+_-\sqrt{b^2 – 4ac}}\over 2a}}$$

E esta é a fórmula mostrada no começo, conhecida mundialmente como Fórmula de Bhaskara e usada em toda parte para solucionar inúmeros problemas envolvendo as equações do segundo grau.

Lembre-se do que falamos nos parágrafos anteriores. Essas equações têm duas soluções ou raízes. Como isso é obtido?

Olhando bem para a fórmula, vemos que o radical existente no segundo membro é precedido pelos sinais (+) e (-). Isso se deve ao fato de que um número elevado ao quadrado, sempre resulta em positivo. Consequentemente, para cada número positivo, existem duas raízes quadradas simétricas. Por exemplo: $\sqrt{ + 4} = \pm {2}$, pois tanto ${(+2)}^2 = + 4 $ quanto ${(-2)}^2 = +4$

Podemos então dizer que existem duas soluções ou raízes (x’  x”) para a equação do segundo grau. Iremos obter essas soluções, da seguinte maneira:

$${x’} = {{-b +\sqrt{b^2 – 4ac}}\over 2a} $$

$${x”} = {{-b – \sqrt{b^2 – 4ac}}\over 2a} $$

Uma das soluções é obtida pela soma do resultado da raiz quadrada e a outra pela subtração. Isso traz algumas considerações que serão vistas mais adiante. Por enquanto, vejamos como se aplica essa fórmula na solução de uma equação do segundo grau.

Obs.:Essa demonstração não é cobrada em provas e concursos, salvo em se tratando de concurso para professores de matemática. Eu costumo mostrar para que o aluno saiba que ela não surgiu do nada. Existe todo um raciocínio que leva a esse resultado final. Mesmo não sendo exigida a memorização da demonstração, o fato de saber que ela existe e é obtida seguindo uma lógica, serve de estímulo ao entendimento e aplicação da mesma.

Seja a equação $$\color{Red}{x^2 + x – 6 = 0}$$

Começamos por identificar os coeficientes numéricos. Vamos comparar essa equação com a forma geral. Escrevendo lado à lado, temos:

$${ax^2 + bx + c = 0} $$

$${x^2 + x – 6 = 0}$$

Comparando as duas, vemos que o coeficiente ${a = 1} $ ${b = 1}$ ${c} = {-6} $. Substituindo na fórmula, teremos:

$${x} = {{-1 \pm\sqrt{1^2 – 4\cdot {1}\cdot{(-6)}}}\over {2\cdot{1}}} $$

$${x} = {{-1\pm\sqrt{1 + 24}}\over 2} $$

$${x} = {{-1\pm\sqrt{25}}\over 2}$$

$${x} = {{-1\pm5}\over 2} $$

Agora é a hora de separar para obter as duas raízes.

$${x’} = {{-1 + 5}\over 2} $$

$$ {x’} = {{4\over 2}}$$

$ x’ = 2 $

$${x”} = {{-1 – 5}\over 2}$$

$${x”} = {-6\over 2} $$

$ x” = -3$

Daí resulta que: \[\color{Blue}{V = \{ -3, 2\}}\]

A equação dada, torna-se uma expressão verdadeira se substituirmos o x por -3 ou por 2. Basta verificar.

$$\begin{align} {(-3)}^2 + (-3) – 6 = 9 – 3 – 6 &= 0\end{align}$$

$$\begin{align}{2^2 + 2 – 6} = 4 + 2 – 6 &= 0\end{align}$$

Agora é hora de praticar.

Determine os conjuntos verdade ou as soluções das equações do segundo grau a seguir.

a)$\color{Sepia}{x^2 -4x + 3 = 0}$

b)$\color{Sepia} {x^2 -2x – 15 = 0} $

c)$\color{Sepia} {x^2 + 2x -35 = 0}$

d)$\color{Sepia} {4x^2 -8x + 3 = 0}$

e)$\color{Sepia} {3x^+ 5x – 2 = 0} $

f)$\color{Sepia} {4x^2 + 4x – 15 = 0}$

g)$\color{Sepia}{x^2 + 3x – 40 = 0}$

Curitiba, 06 de maio de 2016. Republicado em 22 de dezembro de 2017.

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732

01.050 – Matemática, álgebra. Equações do primeiro grau, exercícios resolvidos e para resolver.

Exercícios de equações do primeiro grau

Vamos determinar o conjunto verdade das equações do primeiro grau a seguir.

a)\[\color{Sepia}{7 y – 2 = 26}\] \[{7 y – 2 + 2} = {26 + 2}\] \[{7y} = {28}\] \[{(7y)\over{7}} = {(28\over 7}\]  \[y = 7 \]

\[\color{Orchid}{V =\{7\}}\]

b) \[\color{Sepia}{ 25 – 3x = 17 – 7}\]  \[25 – 3x -25 = 10 – 25\] \[ -3x = -15\]\[{-3x\over-3}= {-15\over -3}\] \[x = 5\]

\[\color{Orchid}{ x =\{5\}}\]

c)$$\color{Sepia}{ 4x + 12 – x = 25 – 7 }$$

$ 4x – x + 12 – 12 = 18 – 12 $

$3x = 6 $

$ {3x\over 3} = {6\over 3}$

$ x = 2$

\[\color{Orchid}{V=\{2\}}\]

d)$$\color{Sepia}{ 6x – 9 = x + 26}$$

$ 6x – 9 + 9 -x = x – x + 26 + 9 $

$5x = 35 $

${5x\over 5} = {35\over 5} $

$ x = 7 $

\[\color{Orchid}{V =\{7\}}\]

e)$$\color{sepia}{{2\over 3}{x} +{ 5} = {44\over{ 4}}}$$

${2\over3}{x}+ (+ 5 – 5) = 11 – 5 $

${2\over 3}{x}\cdot 3 = 6\cdot 3 $

$ 2x = 18 $

${2x\over 2} = {18\over 2} $

$ x = 9 $

\[\color{Orchid}{V=\{ 9\}}\]

Resolvendo alguns problemas.

  1. José vendeu em sua loja, no decorrer de um dia de semana, várias quantidades de uma mesma mercadoria. Dependendo das quantidades e disposição dos clientes, ele concedeu alguns descontos. Vendeu 3 unidades a um cliente, pelo valor de $R\$ 140,00$. Outro pagou por duas unidades $R\$ 100,00$ e um terceiro pagou por uma unidade $R\$ 60,00$. Qual foi o valor médio de venda de cada unidade?

Vamos representar por$ x $ o valor médio de venda de cada unidade. Podemos assim escrever uma pequena equação.

$\begin{align}{3x + 2x + x} = {140,00 + 100,00 + 60,00}\end{align} $

$\begin{align}{6x} = 300,00\end{align} $

$\begin{align}{6x\over 6} = {300,00\over 6}\end{align}$

$\begin{align} {x} = {50,00}\end{align}$

$$\color{Orchid}{V = R\$ 50,00}$$.

As seis unidades foram vendidas pelo preço médio de $\color{Indigo}{R\$ 50,00}$

2. Uma peça de tecido tem, ao todo, $40\,m$ de comprimento. Uma confecção usa esse tecido para fabricar conjuntos de moleton. Cada conjunto consome 2,5 m de tecido. Quantos conjuntos podem ser fabricados com 5 peças de tecido?

A nossa incógnita nesse problema é a quantidade de conjuntos e vamos representa-la pela letra $y$ O total de tecido obtemos multiplicando o comprimento de cada peça por $5$. Esse total é igual ao número de conjuntos pelo comprimento do tecido gasto na confecção de cada um. Assim:

$\begin{align}{2,5y} = 5\cdot 40\end{align}$

$\begin{align}{2,5y\over 2,5} = {200\over 2,5}\end{align} $

$\begin{align}{y} = {80}\end{align}$

\[\color{Orchid}{V = 80}\].

Podem ser fabricados 80 conjuntos com as 5 peças de tecido.

Alguns exercícios para treinar em seu caderno ou bloco de anotações.

a) Determine o conjunto verdade (solução) das equações do primeiro grau listadas a seguir.

I) $\color{Brown}{24 – 3x = x – 16}$

II)$\color{Brown}{{5\over3}x +{ 8\over6} = {12\over4}}$

III)$\color{Brown}{2x + 7 = 5x + 22}$

IV)$\color{Brown}{{4/3}x – 5/2 = 3x – 42}$

V)$\color{Brown}{81 – 5y = – 3y + 11}$

VI)$\color{Brown}{ – 64 + 2x – 7/2 = 9}$

VII)$\color{Brown}{ 18 + 5y – 9/5 = y -4}$

VIII)$\color{Brown}{ 3x + 25 = – x + 5}$

IX) $\color{Brown}{7x – 26 = 2x + 14}$

X) $\color{Brown}{ 243 – 9x = 27 – 3x}$

b)Resolva, usando equações do primeiro grau, os pequenos problemas propostos a seguir.

I) Dona Elisa resolveu dar uma volta no Shopping Center que havia nas redondezas. Enquanto ia vendo as vitrines, viu um par de sapatos que lhe agradou. Comprou um que lhe servia e na cor preferida por ${ R\$ 145,00}$. Na continuação do seu passeio encontrou também um cinto de que estava necessitada. O preço era de promoção e ela decidiu adquirir o cinto, que custou ${R\$ 45,00}$. Também comprou uma blusa para combinar com uma saia que ganhara de presente do amigo secreto por ocasião do Natal. O preço foi de ${R\$ 55,00}$. A fome bateu e foi até a praça de alimentação, onde comeu uma salada de frutas, junto com um copo de água de coco. Havia verificado que seu limite no cartão de crédito, ao sair de casa, era de ${R\$ 300,00}$. Depois de pagar as compras e o lanche, verificou que ainda lhe restavam ${R\$ 37,00}$ do limite. Qual foi o preço que pagou pela salada de frutas com o copo de água de côco?

II) Pedro foi ao centro da cidade a procura de brinquedos para comprar de presente de Natal para a família. Levava suas contas a sério e não poderia gastar mais do que ${R\$ 500,00}$ nas compras que iria fazer. A vida andava difícil. Começou comprando um par de sandálias para a esposa por ${R\$ 115,00}$, também um tênis para a filha por ${R\$ 83,00}$. Foi até a loja de brinquedos onde adquiriu um boneco dos power rangers para o filho caçula por ${R\$ 145,00}$. Faltava o presente para o filho mais velho, que queria um par de tênis de marca. vamos ajudar Pedro a saber de quanto pode dispor na compra do tênis para o filho, sem ultrapassar o valor inicialmente estabelecido como limite?

III)Joãozinho recebeu de sua mãe uma nota de ${R\$ 50,00}$, junto com um bilhete onde estavam anotadas as compras que deveria trazer da mercearia de seu José, onde fazia o abastecimento da família das pequenas compras do dia-a-dia. Ao chegar no estabelecimento, Joãozinho viu um doce de que gostava muito. Ficou pensando se daria uma sobrinha para comprar um daqueles doces que tanto gostava. No bilhete constavam: 1,0 kg de carne moída de primeira, 1,0 kg de tomate bem maduro, 0,5 kg de cebola, um pacote de 500 g de espaguetti para fazer uma macarronada, dois pés de alface, uma dúzia de ovos, dois litros de leite UHT integral. O menino foi juntando suas compras num pequeno carrinho. O açougueiro colocou um punhado de carne moída e pôs na balança. Na etiqueta do preço constava ${R\$ 22,50}$. Na balança das verduras alguns tomates totalizaram ${R\$ 5,80}$, as cebolas custaram ${R\$ 3,75}$; o pacote de espaguetti saiu por ${R\$ 4,25}$ e os dois litros de custaram ${R\$ 3,20}$ cada um. Os ovos ficaram por ${R\$3,85}$ e cada pé de alface não ficou por menos de ${R\$ 1,35}$. Ajude o Joãozinho a verificar se dá para comprar um daqueles doces, que custam ${R\$ 2,50}$ cada um? Será que vai dar?

Curitiba, 06 de maio de 2016. Melhorado e republicado em 22 de dezembro de 2017.

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732

01.049 – Matemática, Álgebra, equações.

O que são equações?

Talvez você saiba o que é equalizar o som produzido por um aparelho. Na verdade você ajusta os níveis de saída dos diferentes sons agudos, médios e graves para que eles sejam produzidos de modo equilibrado, constante e principalmente harmoniosa.

A palavra equação tem origem semelhante. Tem a ver com igualdade. Mas igualdade de que?

Continue lendo “01.049 – Matemática, Álgebra, equações.”

01.047 – Matemática, Álgebra. Divisão.

Divisão em álgebra

O processo de divisão algébrica, torna-se por vezes bem complexo. Mas podemos verificar o que é possível fazer. Começamos por monômios, com fatores semelhantes. Subiremos um degrau de cada vez e quando vemos estamos no topo.

Vejamos o exemplo:

$$\color{Sepia}{{15a^4b^3x^2}\div{5a^2bx^2}} $$

Para facilitar vamos colocar na forma de divisão indicada, isto é, como uma fração algébrica.

$${{15a^{4}b^{3}x^{2}}\over{5a^{2}bx^{2}}} $$

Continue lendo “01.047 – Matemática, Álgebra. Divisão.”

01.038 – Matemática – Álgebra. Redução de termos semelhantes

Redução de termos semelhantes.

O que significa esse título?

Imagine uma expressão algébrica com vários termos, sendo alguns deles semelhantes. Já sabemos, nesta altura dos acontecimentos, que sempre devemos buscar a expressão mais simples que for possível estabelecer, para facilitar qualquer solução que tenhamos em mente.

Devemos ter em mente que, em uma mesma expressão, não é aceitável que uma mesma letra (símbolo) represente mais de um valor. Por exemplo se $$\begin{align}\color{Sepia}{{x} = 5}\end{align}$$ em um termo de uma expressão algébrica, em todos os lugares em que aparecer a letra $\color{Red}{x}$, ela terá sempre o valor $\color{Red}{5}$. Então, as partes literais de vários termos algébricos semelhantes, terão o mesmo valor. O que distingue os termos entre si, são seus coeficientes. Isto indica quantas parcelas iguais serão somadas ou subtraídas entre si nesta expressão. Desta forma nos é possível substituir vários termos semelhantes por um único termo, cujo coeficiente seja a soma dos coeficientes numéricos daqueles.

Continue lendo “01.038 – Matemática – Álgebra. Redução de termos semelhantes”

01.036 – Matemática – Álgebra, introdução e conceitos básicos.

Iniciação à álgebra.

A origem da palavra “álgebra”, é um tanto dúbia. Supõe-se que tenha surgido a partir de um livro de um matemático árabe, escrito no ano 825 d.C. No título desse livro há a palavra “al-jabr” e o assunto é exatamente o estudo do que hoje denominamos com esse nome.

Traduzindo para uma linguagem comum e direta, consiste na substituição de números (algarismos) por letras ou outros símbolos. O uso das letras universalizou-se, uma vez que isso dispensa a criação de uma nova coleção de símbolos para representar números de qualquer valor. Usamos tanto o alfabeto latino, como o grego, além de alguns símbolos criados especialmente para indicar operações matemáticas. Poderia alguém perguntar:

  • Qual a utilidade de substituir números por letras?
  • À primeira vista, parece não oferecer nenhuma vantagem. Quando porém ingressamos nas aplicações mais complexas da matemática, para solucionar problemas, percebemos a utilidade desse procedimento. Há sempre um valor a ser determinado, que denominamos incógnita e aí começa o uso de letras para representar esses números desconhecidos em determinada situação.

Continue lendo “01.036 – Matemática – Álgebra, introdução e conceitos básicos.”

01.034 – Matemática, Exercícios resolvidos

Lista de exercícios

Resolvidos e comentados.

Uma pessoa, encontrou meus artigos sobre matemática (quatro operações, propriedades, potenciação e radiciação), que publiquei há um ano passado aproximadamente. Ali encontrou meus contatos e telefonou, para pedir ajuda. Trata-se de uma lista de exercícios sobre o assunto. Tentou me explicar por telefone e eu tentei lhe resolver, pela forma como entendi. Graças a Deus, eu tive a ideia de pedir que ele fizesse uma cópia (scanner) e me mandasse por e-mail, pois eu havia entendido erradamente e a resposta estaria errada. São ao todo 13 exercícios, alguns bastante simples de solucionar, outros exigem mais raciocínio, com aplicação de recursos aritméticos e algébricos.

Continue lendo “01.034 – Matemática, Exercícios resolvidos”

01.033 – Matemática – Aritimética, razão, proporção. Regra de três simples

Aplicação das proporções – Regra de três simples.

  • Uma das principais aplicações das proporções é a conhecida Regra de Três. Cabe talvez a pergunta, por que o nome Regra de Três? 

Na verdade, o nome se deve ao fato de serem fornecidos três valores e existir um quarto valor desconhecido. São valores de duas grandezas que se correspondem. A existência de proporção entre esses valores, permite que seja determinado o quarto valor, através do conhecimento dos outros três.

Vamos ver um exemplo.

Continue lendo “01.033 – Matemática – Aritimética, razão, proporção. Regra de três simples”

01.032 – Matemática, Aritimética. Fração, razão, proporção e suas propridades II

Proporções e suas propriedades.

  • No post anterior sobre o assunto, chegamos a ver três propriedades das proporções. Vamos lembrar:
  •  O produto dos extremos é igual ao produto dos meios. 
  • Alternando os extremos entre si, a proporção continua existindo.
  •  Alternando os meios entre si, a proporção continua existindo. 

OBS.: Se aplicarmos as propriedades dois e três ao mesmo tempo, equivale a aplicar uma quarta propriedade.

  •  Invertendo as posições dos antecedentes com seus consequentes, continuamos a ter uma proporção.
  • Vejamos o exemplo.
    • $\mathbf{\color{Navy}{{2\over 3} = {6\over 9}}}$
  • Se invertermos teremos.
    • $\mathbf{\color{Navy}{{3\over 2} = {9\over 6}}}$

Tanto na primeira como na segunda proporção teremos:

  • $\mathbf{\color{Navy}{{2\cdot 9} = {3\cdot 6}}}$
  • $\mathbf{\color{Navy}{{3\cdot 6}={9\cdot 2}}}$
  • Ambas as  multiplicações resultam em igualdades e dão o mesmo valor.

Continue lendo “01.032 – Matemática, Aritimética. Fração, razão, proporção e suas propridades II”