01.035 – Matemática – Aritmética. Razão e proporção. Regra de três composta.

No estudo da regra de três simples, usamos apenas duas grandezas que se relacionam. Sendo um dos valores desconhecido, é possível descobrir seu valor com o uso dos outros três valores conhecidos, formando uma proporção. A aplicação das regras das proporções nos fornece procedimentos para atingir nossa finalidade.

Quando o problema envolve três ou mais grandezas, a regra simples não nos ajuda. Mas podemos recorrer à chamada Regra de Três composta. Para isso é conveniente elaborar uma tabela com tantas colunas quantas forem as grandezas. Haverá grandezas diretamente proporcionais e as inversamente proporcionais, ocasionando a inversão da ordem em que aparecem no cálculo. Vamos tomar um exemplo.

  1. Sabendo que $5$ torneiras iguais, totalmente abertas, enchem um tanque de $6000$ litros de água, em $4$ horas de fluxo. Se colocarmos $8$ torneiras iguais, enchendo um tanque de $10000$ litros, qual será o tempo para conclusão do processo?
TorneirasLitrosHoras
560004
810000X
Analisando o problema, notamos que, se o volume de água permanecer o mesmo, o número maior de torneiras tornará o tempo gasto menor. O que nos leva a concluir que o número de torneiras é inversamente proporcional ao tempo.
Se o número de torneiras permanecer constante, haverá uma demora maior do que as 4 horas para encher o tanque de 10000 litros. Volume de água e tempo diretamente proporcionais. Então podemos escrever a proporção da seguinte forma.

$ {4\over X} ={8\over 5}\times{6000\over 10000}$

${4\over X} = {48000\over 50000}$

Multiplicando os extremos e os meios entre si, teremos:

$48000\times X = 4\times 50000$$\Leftrightarrow$$X = {200000\over 48000}$

$$\color{Brown}{X \simeq 4,17 horas}$$

2. Usando um ferro elétrico $1$ hora por dia, durante $20$ dias, o consumo de energia será de $10\, kW/h$. Se o mesmo ferro elétrico for usado $110$ minutos por dia durante $30$ dias, qual será o consumo? 

tempo/dia DiasConsumo(kW/h)
602010
11030x
As grandezas todas são diretamente proporcionais. Usando o ferro por mais dias, aumentará o consumo. Usando o mesmo ferro por mais tempo diariamente o consumo em 20 dias também aumentará. Então a proporção ficará:

${10\over X} = {60\over 110}\times{20\over 30}$$\Leftrightarrow$${10\over X} = {1200\over 3300 }$

$ 1200\times X = 10\times 3300$$\Leftrightarrow$$ X = {10\times 3300\over 1200}$

$$\color{Sepia}{X = 27,5\, kW/h}$$

3. Trabalhando $10$ horas por dia, durante $18$ dias, João recebeu $R\$ 2 100,00$. Se trabalhar $8$ horas por dia, quantos dias ele deverá trabalhar para receber $R\$ 2 700,00$?

Horas/diaDiasRemuneração
10182.100,00
8x2.700,00
O número de horas diárias é inversamente proporcional ao número de dias. Os dias de trabalho são proporcionais ao valor da remuneração. Então devemos estabelecer a proporção:

${18\over X} = {8\over 10}\times{2100,00\over 2700,00}$$\Leftrightarrow$${18\over X}= {16800,00\over 27000,0}$

${16800\times X} = {27000\times 18}$$\Leftrightarrow$$X ={27000\times 18\over 16800}$

$$\color{Sepia}{x\simeq 29 dias}$$

4. Em uma empresa, $10$ funcionários produzem $3 000$ peças, trabalhando $8$ horas por dia durante $5$ dias. O número de funcionários necessários para que essa empresa produza $7 000$ peças em $15$ dias, trabalhando $4$ horas por dia, será de quanto?
Nº funcionáriosNº peçash/diaDias
10300085
X7000415
O número de peças é proporcional ao número de funcionários. O número de horas dia é inversamente proporcional ao número de funcionários. O número de dias é inversamente proporcional ao número de funcionários. Portanto a proporção fica sendo:

${10\over X} = {3000\over 7000}\times{4\over 8}\times{15\over 5}$

${10\over X} = {3000\times\not{4}\times\not{15}\over 7000\times\not{8}\times\not{5}}$

${10\over X} ={30\times 3\over 70\times 2}$$\Leftrightarrow$${90\times X} = {10\times 140}$

$$\color{Sepia}{X ={1400\over 90}\simeq15,56}$$

Serão 16 funcionários pois não existe fração de funcionário.

Exercitando.

01. (Unifor–CE) Se $6$ impressoras iguais produzem $1000$ panfletos em $40$ minutos, em quanto tempo $3$ dessas impressoras produziriam $2000$ desses panfletos? 

02.(UFMG)- Uma empresa tem $750$ empregados e comprou marmitas individuais congeladas suficientes para o almoço deles durante $25$ dias. Se essa empresa tivesse mais $500$ empregados, a quantidade de marmitas adquiridas seria suficiente para quantos dias? 

03.(Unifor–CE)Um texto ocupa $6$ páginas de $45$ linhas cada uma, com $80$ letras (ou espaços) em cada linha. Para torná-lo mais legível, diminui-se para $30$ o número de linhas por página e para $40$ o número de letras (ou espaços) por linha. Considerando as novas condições, determine o número de páginas ocupadas.

04.(UFRGS-RS)-Se foram empregados $4\, kg$ de fios para tecer $14$ m de uma maquete de fazenda com $80\,cm$ de largura, quantos quilogramas serão necessários para produzir $350\,m$ de uma maquete de fazenda com $120\,cm$ largura?

05.Em $8 horas$, $20$ caminhões descarregam $160\,m^{3}$ de areia. Em $5 horas$, quantos caminhões serão necessários para descarregar $125\,m^{3}$?

06.Em uma fábrica de brinquedos, $8$ homens montam $20$ carrinhos em $5$ dias. Quantos carrinhos serão montados por $4$ homens em $16$ dias?

07.Dois pedreiros levam $9$ dias para construir um muro com $2\,m$ de altura. Trabalhando $3$ pedreiros e aumentando a altura para $4\,m$, qual será o tempo necessário para completar esse muro?

08. Três torneiras enchem uma piscina em $10$ horas. Quantas horas levarão $10$ torneiras para encher $2$ piscinas?

09.Uma equipe composta de $15$ homens extrai, em $30$ dias, $3,6$ toneladas de carvão. Se a equipe for aumentada para $20$ homens, em quantos dias conseguirão extrair $5,6$ toneladas de carvão?

10.Vinte operários, trabalhando $8$ horas por dia, gastam $18$ dias para construir um muro de $300\,m$. Quanto tempo levará uma turma de $16$ operários, trabalhando $9$ horas por dia, para construir um muro de $225\,m$? 

11.Um caminhoneiro entrega uma carga em um mês, viajando $8\, horas$ por dia, a uma velocidade média de $50\,km/h$. Quantas horas por dia ele deveria viajar para entregar essa carga em $20$ dias, a uma velocidade média de $60\,km/h$?

12.Com uma certa quantidade de fio, uma fábrica produz $5400\,m$ de tecido com $90\,cm$ de largura em $50\, minutos$. Quantos metros de tecido, com $1$ metro e $20$ centímetros de largura, seriam produzidos em $25\, minutos$? 

Havendo dúvidas na resolução dos exemplos ou sobre o raciocínio a ser desenvolvido de modo geral, use um dos canais abaixo listados para pedir ajuda. Não fique na dúvida. Aproveite para esclarecer tudo sem problema algum.

Curitiba, 15 de junho de 2020

Décio Adams

[email protected]  

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732

 

067.11 – Matemática, álgebra. Cologaritmo e antilogaritmo.

Logaritmos

Cologaritmo

Vimos que se ${0 < a ≠ 1}$ e ${b > 0}$, denominamos logaritmo de ${b}$ na base ${a}$ ao expoente de ${a}$ que resulta na potência igual a ${b}$.

Já o cologaritmo é o oposto ou simétrico do logaritmo. Assim: ${colog_a{b} = – log_a{b}}$

${colog_a{b} = (-1)\cdot{log_a{b}}} ⇔ {colog_a{b} = log_a{b}^{-1}}$

${colog_a{b} = log_a{1\over b}}$

Fica demonstrado que o cologaritmo de um número em determinada base é igual ao logaritmo de seu inverso na mesma base.

Continue lendo “067.11 – Matemática, álgebra. Cologaritmo e antilogaritmo.”

067.10 – Matemática, álgebra. Equações logarítmicas

Equações logarítmicas

Há várias formas de equações envolvendo logaritmos. Vamos ver o primeiro deles.

I) Igualdade entre logaritmos de mesma base, como

${log_a{x} = log_a{y}}  ⇔ { x = y}$

Exemplo.

${log_5\underbrace{{(2x + 4)}} =  log_5\underbrace{{(3x + 1)}}}$

${2x + 4 = 3x + 1} ⇔ {2x – 3x = 1 – 4}$

${-x = -3} ⇔ {-x\cdot{(-1)} = -3\cdot{(-1)}}$

${x = 3} ⇔ {S = \{3\}}$

Continue lendo “067.10 – Matemática, álgebra. Equações logarítmicas”

067.9 – Matemática, álgebra. Condições de existência dos logaritmos.

Estudo da existência dos logaritmos.

 

Vimos no início do nosso estudo dos logaritmos que

${log_a{b} = x}$, tem como condição de existência que tenhamos:

${a > 0,  a ≠ 1}$ ⇔ ${0 < a ≠ 1}$

${b > 0}$

Se estas condições não forem satisfeitas o logaritmo não existe. Isso nos leva a um tipo de expressão em que precisamos analisar uma ou mais situações e estabelecer a condição de existência daquele(s) logaritmo(s) especificamente.

Continue lendo “067.9 – Matemática, álgebra. Condições de existência dos logaritmos.”

067.8 – Matemática, álgebra. Expressões logarítmicas.

Expressões logarítmicas.

Vamos exercitar.

 Desenvolver as expressões logarítmicas.

a) ${log_a{({m\cdot n})^v}}$

O expoente do logaritmando, irá multiplicar o logaritmo

${log_a{({m\cdot n})^v}} = {v\cdot{log_a{({m\cdot n})}}}$

Aplicando a propriedade da multiplicação, transformamos o logaritmo da multiplicação e adição dos logarítmos.

${v\cdot({log_a{m} + log_a{n}})} = v\cdot{log_a{m}} + v\cdot {log_a{n}}$

b)${log_x{({{p}\cdot {q}\over {r}})^u}}$

O expoente do logaritmando colocamos novamente multiplicando o logaritmo.

${ u\cdot{log_x{({{p}\cdot{q}\over{r}})}}} = {u\cdot{[log_x{({p}\cdot{q}) – log_x{r}]}}} = {u\cdot{[log_x{p} + log_x{q} – log_x{r}]}}$

Continue lendo “067.8 – Matemática, álgebra. Expressões logarítmicas.”

067.6 – Matemática, álgebra. Logaritmos. Mudança de base um logaritmo.

Logaritmos com mudança de base

 

Ao longo dos estudos empregando logaritmos, nos deparamos com situações em que é necessário mudar a base. Como faremos isso?

Tomemos como exemplo o seguinte:

$ {log_8{1024}} $

Decompondo o logaritmando em fatores primos, encontraremos: $ {1024 = 2^{10}}$

Também sabemos que ${ 2^{3} = 8} $.

Assim podemos escrever: $ {log_8{(8^{3}\cdot 2)}} $

Daí podemos tirar que: ${log_8{8^3} + log_8{2}}$

Continuamos: $ {3\cdot {log_8{8}} + log_8{2}}$

$ {3\cdot {1} } + log_8{2} = 3 + log_8{2}$

Sabemos que: $ {2 = \sqrt[3]{8}}$

Logo: ${ 2 = 8^{{1}\over{3}}} $

Então podemos dizer: $ 3 + log_8{2} = 3 + log_8{8^{{1}\over{3}}} = {3 + {{1\over3}}\cdot {log_8{8}}}$

$ {3 + {{1}\over {3}}\cdot{1}} =  {{{3\cdot 3} + 1}\over{3}}$

$ {{9 + 1} \over{3}} = {{10}\over{3}} $

Continue lendo “067.6 – Matemática, álgebra. Logaritmos. Mudança de base um logaritmo.”

01.062 – Matemática, Álgebra. Inequações do 1º grau – Exercícios resolvidos.

Vamos “malhar”?

  • Determine o conjunto verdade das inequações a seguir.
  • $\bbox[5px,border:2px solid brown]{\color{blue}{ 4x – 7 \lt 2x + 1}} $

Observamos que há termos com a variável $x$ tanto no primeiro como no segundo membro da inequação. Igualmente termos independentes da variável. Para obtermos a solução precisamos deixar a variável no primeiro membro e os termos independentes no segundo. Isso fazemos adicionando os simétricos em ambos os lados. Assim:

\[{4x – 7} \lt {2x + 1} \]

\[ \underbrace{\color{blue}{( 4x – 2x)}} +\underbrace{\color{maroon}{ (- 7 + 7) }} \lt  \underbrace{\color{blue}{ (2x – 2x)}} + \underbrace{\color{maroon}{( + 1 + 7) }} \]

\[2x + 0 \lt 0 + 8 \]  \[{ 2x } \lt { + 8} \]

Para concluir, vamos dividir ambos os membros pelo fator $2$, o que nos deixará a variável $x$ isolada no primeiro membro da inequação. Não há necessidade de mudança de sentido, pois ambos os termos são positivos.

\[ \frac{2x}{2} \lt \frac{+8}{2} \]

\[ x \lt 4 \]

Portanto

\[\bbox[5px,border:2px solid brown]{\color{navy} {V} = \color{navy}{\{ x\in R | x \lt +4 \}}}\]

Rendered by QuickLaTeX.com

  • $\bbox[5px,border:2px solid brown]{\color{blue}{ 11 + 3x \gt – 8}} $

Vamos isolar $x$ no primeiro membro, adicionando $ – 11$ aos dois membros da inequação.

\[\overbrace{\color{maroon}{ (11 – 11)}} + 3x  \gt \overbrace{\color{maroon}{ (-8 -11)}} \] \[ 0 + 3x \gt – 19 \] \[ {3x} \gt {- 19} \]

Dividindo ambos os membros por $3$, iremos isolar $x$ no primeiro membro.

\[ \frac{ (3x) }{ 3 } \gt \frac { (-19) }{ 3 } \] \[x \gt {(-19/3)} \]

\[\bbox[4px,border:2px solid brown]{\color{navy} { V = \left\{ x \in R | x \gt \left(-\frac {19}{3}\right)\right \}}} \]

Rendered by QuickLaTeX.com

  • $ \bbox[4px,border:2px solid brown]{\color{navy}{- 6 + 2x \ge 3x + 1}}$

Temos que adicionar $\color{brown}{+6}$ e $\color{brown}{-3x}$ a ambos os membros da inequação, para isolar a variável $\color{brown}{x}$ no primeiro membro.

\[ \underbrace{\color{maroon}{ (- 6 + 6)}} +\underbrace{\color{blue}{(2x – 3x)}} \ge \underbrace{\color{blue}{(3x – 3x)}} + \underbrace{\color{maroon}{(1 +6)}}\]

\[ 0 – x \ge 0 + 7 \] \[ {-x} \ge  7 \]

Multiplicamos por $\color{brown}{ -1}$ para deixar $\color{brown}{x}$ com sinal positivo, invertendo dessa maneira a desigualdade.

\[{-x}\cdot {(-1)} \ge {+7}\cdot {(-1)}\] \[ x \le (-7) \]

\[\bbox[4px,border:2px solid brown]{\color{navy}{V = \{ x \in R | x \le (-7) \}}}\]

Rendered by QuickLaTeX.com

  • $\bbox[5px,border:2px solid brown]{\color{navy}{ 6 \le 5 – 3x}} $

Para trazermos a variável para o primeiro membro, adicionamos seu simétrico $\color{brown}{3x}$, bem como o simétrico $\color{brown}{-6}$ do termo independente. Obtemos assim:

\[ \underbrace{\color{maroon}{(6 – 6)}} + 3x \le \underbrace{\color{maroon}{ (5 – 6)}} + \underbrace{\color{blue}{(-3x + 3x)}} \]

\[ 0 + 3x \le -1 + 0 \] \[ 3x \le -1 \]

Dividindo por $\color{brown}{3}$ ambos os membros, temos:

\[ \frac{3x}{3} \le \frac{(-1)}{3} \]

\[ x \le \left(-{\frac{1}{3}}\right) \]

\[\bbox[5px,border:2px solid brown]{\color{navy}{ V = \left\{ x \in R | x \le \left({-\frac{1}{3}}\right) \right\}}} \]

Rendered by QuickLaTeX.com

  • $\bbox[5px,border:2px solid brown]{\color{navy}{ 3y + 4 \le 7 – y}} $

Adicionando a ambos os membros da inequação os simétricos $\color{brown}{ -4}$ e $\color{brown}{+y}$, teremos:

\[ \underbrace{\color{blue}{(3y + y) }} + \underbrace{\color{maroon}{(4 – 4)}} \le \underbrace{\color{maroon}{(7 – 4)}} + \underbrace{\color{blue}{(-y + y)}} \]

\[ 4y + 0 \le 3 + 0 \]

\[ 4y \le 3 \]

Dividindo ambos os membros por $\color{brown}{4}$, teremos:

\[ \frac{4y}{4} \le \frac{3}{4} \]

\[ y \le \left(\frac{3}{4}\right) \]

\[\bbox[4px,border:2px solid brown]{\color{navy}{ V = \left\{ x \in R | x \le \left({\frac{3}{4}}\right)\right\}}}\]

Rendered by QuickLaTeX.com

  • $\bbox[5px,border:2px solid brown]{\color{blue}{ 15 – 4x \lt 11 + x}}$

Começamos por adicionar aos dois membros os simétricos $\color{brown}{-x}$ e $\color{brown}{-15}$.

\[\underbrace{\color{maroon}{(15 – 15)}} + \underbrace{\color{blue}{(-4x – x)}} \lt \underbrace{\color{maroon}{(11 – 15)}} + \underbrace{\color{blue}{(x – x)}} \]

\[ 0 – 5x \lt -4 + 0 \] \[ -5x \lt -4 \]

Dividindo ambos os membros por $\color{brown}{-5}$, isolamos $\color{brown}{x}$ e invertemos a desigualdade de $\color{brown}{\lt}$ para $\color{brown}{\gt}$.

\[\frac{-5x}{-5} \lt \frac{-4}{-5} \] \[ x \gt \left(\frac{4}{5}\right) \]

\[\bbox[5px,border:2px solid brown]{\color{navy}{ V = \left\{ x \in R | x \gt \left(\frac{4}{5}\right) \right\}}}\]

Rendered by QuickLaTeX.com

  • $\bbox[5px,border:2px solid brown]{\color{blue}{ 6x + 5\gt 4x – 7}}$

Para isolarmos $\color{brown}{x}$ no primeiro membro, temos que adicionar aos dois os simétricos de $\color{brown}{4x}$ e $\color{brown}{5}$, ficando assim:

\[\underbrace{\color{blue}{6x -4x}} + \underbrace{\color{maron}{ 5 – 5}} \gt \underbrace{\color{blue}{4x – 4x}} + \underbrace{\color{maroon}{(-7 – 5)}} \]

\[ 2x + 0 \gt 0 – 12 \] \[ 2x \gt -12 \]

Dividimos por $\color{brown}{2}$ ambos os membros e teremos:

\[ \frac{2x}{2} \gt \frac{-12}{2} \] \[ x \gt -6 \]

\[\bbox[5px,border:2px solid brown]{\color{navy}{ V = \{ x \in R | x \gt – 6 \}}} \]

Rendered by QuickLaTeX.com

  • $\bbox[5px,border:2px solid brown]{\color{blue}{ 2 + 7x \gt 6x + 4}} $

Adicionando $\color{brown}{-2}$ e $\color{brown}{-6x}$ aos dois membros isolamos $\color{brown}{x}$ no primeiro membro.

\[ \underbrace{\color{maroon}{ 2 – 2}} + \underbrace{\color{blue}{7x – 6x}} \gt \underbrace{\color{blue}{6x – 6x}} + \underbrace{\color{maroon}{4 – 2}} \]

\[ 0 + x \gt 0  + 2 \]

\[ x \gt 2 \]

\[\bbox[5px,border:2px solid brown]{\color{navy}{ V = \{ x \in R| x \gt 2\}}} \]

Rendered by QuickLaTeX.com

Curitiba, 02 de junho de 2016

Curitiba, 07 de janeiro de 2018 (Republicação)

Décio Adams

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celulares: (41) 99805-0732

01.061 – Matemática, Álgebra. Inequação do primeiro grau.

Inequação! Que é isso?

Lembremos que uma equação é uma igualdadeentre duas quantidades, representadas por números, letras e expressões de letras com números. O prefixo in é uma negação. Assim a palavra inequação, poderíamos dizer, que é a negação de uma equação. Em outras palavras é uma desigualdade. Existem alguns símbolos que usamos para indicar essas desigualdades como:

  • “Menor do que”                                               $\Rightarrow\color{maroon}{ \mathbf{\lt}} $
  • “maior do que”                                                $\Rightarrow \color{maroon}{\mathbf{\gt}} $
  • “menor ou igual a”                                          $\Rightarrow \color{maroon}{\mathbf{\le}} $
  • “maior ou igual a”                                            $\Rightarrow\color{maroon}{\mathbf{ \ge}} $
  • “Diferente”                                                        $\Rightarrow\color{maroon}{\mathbf{\neq}} $
  • “Não menor do que”                                       $\Rightarrow\color{maroon}{\mathbf{\not\lt}} $
  • “Não maior do que”                                         $\Rightarrow\color{maroon}{\mathbf{\not\gt}} $
  • “Não menor ou igual a”                                    $\Rightarrow\color{maroon}{\mathbf{\not\le}}$
  • “Não maior ou igual a”                                    $\Rightarrow\color{maroon}{ \mathbf{\not\ge}}$

Em determinados momentos, todos esses símbolos podem aparecer em uma expressão matemática. No caso presente, estudo das inequações, iremos usar principalmente os quatro primeiros. Vejamos alguns exemplos:

  • $\bbox[5px,border:2px solid brown]{\color{navy}{2x -3 \lt 0}} $
  • $\bbox[5px,border:2px solid brown]{\color{navy}{ x + 7 \gt 2}} $
  • $\bbox[5px,border:2px solid brown]{\color{navy}{ 8 -x \ge 5}}$
  • $\bbox[5px,border:2px solid brown]{\color{navy}{ 4 + x \le 2x}} $
  • A determinação do conjunto verdade de uma inequação, é feita de modo semelhante ao procedimento adotado nas equações, com algumas peculiaridades próprias.
  • Vamos pegar como exemplo a primeira das quatro citadas acima:
  •  $\bbox[5px,border:2px solid brown]{\color{navy}{2x – 3\lt 0}}$.
  • O objetivo é obter uma desigualdade que indique onde estão localizados os valores que servem para substituir  nessa inequação. Temos então que deixar o isolado no primeiro membro.
  • \[ 2x – 3 + 3 \lt 0 + 3 \] \[2x \lt 3 \] \[ {{2x}\over 2} \lt {3\over 2} \] \[ x \lt {3\over 2} \]
  • Isso nos mostra que todos os números reais, menores do que o número 3/2 servem para x, isto é, transformam a expressão em uma sentença verdadeira. Logo: \[\bbox[5px,border:2px solid brown]{\color{navy}{ V =\left\{ x\in R | {x\lt {3\over 2}}\right\}}} \]
  • Representando o conjunto dos números reais na Reta Real, o conjunto verdade dessa inequação será formado por todos os números associados aos pontos dessa reta, à esquerda do ponto que corresponde ao número 3/2.

Rendered by QuickLaTeX.com

  • A vez da terceira:
  • $\bbox[5px,border:2px solid brown]{\color{navy}{ 8 -x \ge 5}} $
  • Aplicando o mesmo procedimento, ficamos com:
  • \[ 8 – 8 – x \ge 5 – 8 \] \[ -x \ge -3 \]
  • Observe que o os dois membros da inequação são precedidos do sinal $-$, o que nos indica que para melhor interpretação, devemos multiplicar a expressão toda $-1$. Lembrando da reta numérica, vamos observar que a posição dos números negativos, fica invertida em relação ao zero$(0)$, isto é, quanto maior for o módulo, mais à esquerda ele se situa. A consequência disso é que, a multiplicação de uma inequação por $-1$, inverte o sentido da desigualdade, ou seja se era $\le$, passa para $\ge$ e vice-versa. Vamos ver como fica nosso exemplo.
  • \[ {(-x \ge – 3)}\cdot{(-1)} \] \[ x\le 3 \]
  • O conjunto verdade dessa inequação será pois:
  • \[\bbox[5px,border:2px solid brown]{\color{navy}{ V = \{x\in R|{x\le 3}\}}} \]
  • Neste caso o número $3$, faz parte do conjunto verdade. Ficam excluídos apenas os números à direita do $3$. Na Reta Real fica:

Rendered by QuickLaTeX.com

  • O último exemplo:
  • $\bbox[5px,border:2px solid brown]{\color{navy}{ 4 + x \le 2x}} $
  • Aplicando o raciocínio par isolar a variável, temos:
  • \[ 4 – 4 + x \le 2x – 4 \] \[ x – 2x \le 2x – 2x – 4 \] \[ -x \le -4 \]
  • Novamente é preciso multiplicar por $-1$, e inverter o sinal da desigualdade.
  • \[{(-x \le -4)}\cdot{(-1)} \] \[ x \ge 4 \]
  • O conjunto verdade será composto por todos os números reais, desde o $4$ inclusive, até infinito$\infty$.
  • \[\bbox[5px,border:2px solid brown]{\color{navy}{V = \{x\in R|{x\ge 4}\}}} \]
  • Na Reta Real,  teremos:

Rendered by QuickLaTeX.com

  • O final da resolução de qualquer inequação de primeiro grau será sempre a variável, seguida de um sinal de desigualdade e depois um número. Se a variável tiver sinal negativo, devemos multiplicar por $\color{Brown}{-1}$ e inverter o sinal da desigualdade. Isso não pode ser esquecido. 

Vamos “malhar”?

  • Determine o conjunto verdade das inequações a seguir.
  • $\color{navy}{ 4x – 7 \lt 2x + 1}$
  • $\color{navy}{ 11 + 3x \gt – 8} $
  • $\color{navy}{ – 6 + 2x \ge 3x + 1}$
  • $\color{navy}{ 6 \le 5 – 3x} $
  • $\color{navy}{ 3y + 4 \le 7 – y} $
  • $\color{navy}{15 – 4x \lt 11 +x}$
  • $\color{navy}{ 6x + 5\gt 4x – 7}$
  • $\color{navy}{ 2 + 7x \ge 6x + 4} $

 Curitiba, 21 de maio de 2016.

Curitiba, 07 de janeiro de 2018 (Revisto e republicado)

Décio Adams

[email protected]

[email protected]

www.facebook.com/decio.adams

www.facebook.com/livros.decioadams

www.facebook.com/decioadams.matfisonline

@adamsDcio

Fone: (41) 3019-4760

Celular: (41) 99805-0732

01.059 – Matemática, Álgebra. Sistemas de equações com duas incógnitas.

Sistemas com duas incógnitas

Até o último post falando de equações, vimos somente situações em que aparece apenas uma incógnita. E se nos depararmos com um problema em que haja duas incógnitas, como iremos proceder?

Com as ferramentas, ou seja, métodos de resolução vistos até agora, fica complicado. No entanto existem modos de chegarmos a uma resposta satisfatória. Depende das informações que tivermos a respeito dessas incógnitas. Geralmente é necessário saber de duas relações entre essas elas. Isso nos permitirá escrever duas equações envolvendo essas incógnitas e assim formaremos um sistema de duas equações. De posse dessas duas equações, aplicando o raciocínio adequado, poderemos determinar o valor das incógnitas. Nesse raciocínio iremos utilizar as propriedades que estudamos anteriormente para as operações, as expressões algébricas, enfim tudo que vimos até o momento.

Continue lendo “01.059 – Matemática, Álgebra. Sistemas de equações com duas incógnitas.”

01.049 – Matemática, Álgebra, equações.

O que são equações?

Talvez você saiba o que é equalizar o som produzido por um aparelho. Na verdade você ajusta os níveis de saída dos diferentes sons agudos, médios e graves para que eles sejam produzidos de modo equilibrado, constante e principalmente harmoniosa.

A palavra equação tem origem semelhante. Tem a ver com igualdade. Mas igualdade de que?

Continue lendo “01.049 – Matemática, Álgebra, equações.”