01.031 – Matemática – Aritmética, fração, razão, proporção

Razão. 

  • Normalmente essa palavra se refere a habilidade humana de raciocinar, pensar, elaborar teorias e conceitos. Aqui, na matemática, ela tem um significado ligeiramente diferente. Denominamos razão à divisão indicada entre dois números. Facilmente ela é confundida com uma fração, o que aliás não chega a ser nada muito grave, contanto que saibamos algumas regras aplicáveis às razões. Vamos começar com um exemplo. O fato de poder ser representada da mesma forma como as frações, não atrapalha o desenvolvimento do assunto.
  • $$\bbox[4px, border:2px solid Olive]{\mathbf{\color{Sepia} {5\div 8}}}$$
  • $$\bbox[4px, border:2px solid Olive]{\mathbf{\color{Sepia} {5\over 8}}}$$
  • $$\bbox[4px, border:2px solid Olive]{\mathbf{\color{Sepia} {5/8}}}$$

Continue lendo “01.031 – Matemática – Aritmética, fração, razão, proporção”

01.030 – Matemática – Aritmética, fração, razão, proporção, números decimais, dízimas periódicas (conversão)

Transformar dízimas periódicas em frações.

  • O que estou propondo é encontrar a fração que recebe o nome de geratriz da dízima periódica. Vamos começar com as dízimas denominadas simples, isto é, sem algarismos não repetidos. A parte periódica começa logo depois da vírgula. Vamos começar com um exemplo bem simples.
    • $\color{Brown}{0,33…= ?}$
    • $\mathbf{\color{Navy}{0,33 = {3\over 9}}}$
  • Temos uma fração cujos termos numerador e denominador tem divisor comum $\color{Navy}{3}$. Pode portanto ser simplificada para a forma irredutível, dividindo ambos os termos por$3$. Assim:
    • $\mathbf{\color{Navy}{{3\over 9 }  = {{3 \div 3}\over {9\div 3}} = {1\over 3}}}$
  • A geratriz é uma fração que tem como numerador o período (algarismos repetidos) e como denominador tantos algarismos 9, quantos forem os algarismos do período. No exemplo acima, havia apenas um algarismo no período, portanto, também usamos apenas um algarismo 9 no denominador. Se quiser tirar a prova basta dividir o numerador (1) pelo denominador (3) e encontrará a dízima periódica
  • Vejamos mais exemplos.
    • $\mathbf{\color{Navy}{0,5757…=?}}$ $\rightarrow$ $\mathbf{\color{Navy}{0,57 = {{57}\over {99}}}}$
  • A fração geratriz novamente apresenta os termos com o divisor comum $\color{Navy}{3}$ e podemos determinar a sua forma irredutível.
    • $\mathbf{\color{Navy}{{{57}\over {99}} = {{57 \div 3}\over {99 \div3}} = {{19}\over{33}}}}$
  • $\mathbf{\color{Navy}{0,437… = ?}}$
    • $\mathbf{\color{Navy}{0,437… = {{437}\over {999}}}}$
  • Não há como simplificar, pois não existe divisor comum entre os termos da fração geratriz além da unidade. Por isso ela permanece assim. Já está na forma irredutível.

Continue lendo “01.030 – Matemática – Aritmética, fração, razão, proporção, números decimais, dízimas periódicas (conversão)”

01.029 – Matemática – Aritimética, Fração, Razão, Proporção, Números (frações) decimais.

Frações decimais.

  • Pode parecer no primeiro momento que todas as frações são decimais ou números decimais, pois o resultado da divisão do numerador pelo denominador, via de regra, resulta em uma parte inteira, seguida da vírgula e uma ou mais casas decimais. Para não deixar dúvidas, vejamos os exemplos.
  • $\color{Navy}{{3 \div 5}  = 0,6}$
  • $\color{Navy}{{4 \div 7 }  = 0,571428571428…}$
  • $\color{Navy}{{10 \div 8} = 1,25 }$
  • $\color{Navy}{{10 \div 7} = 1,428571428571…}$
  • Podemos notar que existem frações onde a divisão termina exata, isto é, o resto é zero. Há outras em que o resto nunca dá zero e os algarismos decimais se repetem em uma mesma sequência. É o caso dos exemplos 2 e 4. Aquelas frações em que a divisão dá exata, isto é resulta um número decimal exato, sem sobrar resto, são as frações decimais ou números decimais exatos.
  • As frações que resultam em divisão não exata com repetição de algarismos, sobrando sempre um resto diferente de zero, são frações e o resultado da divisão recebe o nome de dízima periódica.  Esse nome vem do fato da repetição periódica dos algarismos resultantes no quociente. Teremos nesse caso sempre que optar por um valor arredondado, ou seja, aproximado, pois o número exato só é representado pela fração.

Continue lendo “01.029 – Matemática – Aritimética, Fração, Razão, Proporção, Números (frações) decimais.”

01.028 – Matemática – Aritimética. Frações, razão, proporção, operações com frações -Divisão.

Vamos dividir frações?

  • Ao estudar as quatro operações da aritmética, vimos que a divisão é a operação inversa da multiplicação. De onde poderíamos deduzir que, para dividir duas frações, basta dividir os numeradores entre si e os denominadores entre si. De fato, isso funciona, porém apresenta alguns problemas na hora de resolver. Mas existe uma maneira alternativa que é fácil de resolver e não apresenta dificuldades. Vamos ver um exemplo.
  • \[\bbox[4px,border:2px solid Olive]{\mathbf{\color{Navy}{{\frac{6}{10}}\div{\frac{2}{5}}}}}\]
  • Fica assim:
  • \[\mathbf{\color{Navy}{\frac{(6 / 2)}{(10 / 5)}  = \frac{3}{2}}}\]

Escolhi essas frações por que nelas não aparece nenhum problema para fazer a divisão entre numeradores e denominadores. Assim, fica mais fácil explicar o modo alternativo que iremos utilizar na continuação. O segredo é transformar a divisão em uma multiplicação e, para isso, basta inverter os termos da fração divisor. Assim:

  • \[\mathbf{\color{Navy}{\frac{\frac{6}{10}}{\frac{2}{5}} = \frac{6}{10}\times\frac{5}{2}}}\]

Cancelando os fatores comuns entre numeradores e denominadores temos:

  • \[\mathbf{\color{Navy}{\frac{2\times 3}{2\times 5}\times{\frac{5}{2}}= \frac{3}{2}}}\]
  • Vemos que o resultado é o mesmo e podemos portanto converter toda divisão de frações em multiplicação. Basta inverter a posição do numerador e denominador da fração divisor.

Vejamos outro exemplo:

  • \[\mathbf{\color{Navy}{{\frac{3}{5}}\div{\frac{4}{7}} = \frac{3\cdot 7}{5\times 4}  = \frac{21}{20}}}\]
  • Não há fatores comuns, mas a fração resultante é imprópria, podendo ser transformada em número misto.
  • \[\mathbf{\color{Navy}{\frac{21}{20} = 1\frac{1}{20}}}\]

Continue lendo “01.028 – Matemática – Aritimética. Frações, razão, proporção, operações com frações -Divisão.”

01.027 – Matemática – Aritmética. Frações, razão, proporção, operações com frações.

Subtração de frações.

  • Na subtração de frações, procedemos da mesma maneira que na adição. Se os denominadores são iguais, basta fazermos a subtração entre os numeradores.
  • $\bbox[4px,border:2px solid Olive]{\mathbf{\color{Navy}{\frac{5}{7} – \frac{3}{7}}}}$
  • Ambas as frações tem denominador 7, portanto fazemos:
  • $\mathbf{\color{Navy}{\frac{5}{7} – \frac{3}{7} = \frac{5 – 3}{7}= \frac{2}{7}}}$

Continue lendo “01.027 – Matemática – Aritmética. Frações, razão, proporção, operações com frações.”

01.026 – Matemática – Aritimética. Frações, razão, proporção. Adição de frações

Adição de frações.

  • Frações com o mesmo denominador.

  • Se os denominadores das frações são iguais, a adição será efetuada pela manutenção do denominador e adição dos numeradores.
  • $\bbox[4px,border:2px solid Olive]{\mathbf{\color{Navy}{\frac{3}{7} + \frac{5}{7} + \frac{6}{7} = \frac{3 + 5 + 6}{7}}}}$
Frações de mesmo denominador
Tres frações de mesmo denominador.
  • Temos três retângulos, divididos em sete partes iguais. No primeiro tomamos $3$ (três) partes, no segundo $5$ (cinco) partes e no terceiro $6$ (seis) partes.
  • Quantas partes iguais foram juntadas?
  • É fácil constatar que foram $14$ partes. O que corresponde a exatamente dois inteiros.
  • $\bbox[4px,border:2px solid Olive]{\mathbf{\color{Navy}{\frac {14}{7}  = 2}}}$
Frações de mesmo denominador (1)
A soma das frações representadas, totalizando dois inteiros, divididos em sete partes cada um.
  • No final foi possível fazer a divisão do numerador pelo denominador, resultando em um número inteiro. Vejamos outro exemplo.
Continue lendo “01.026 – Matemática – Aritimética. Frações, razão, proporção. Adição de frações”

01.025 – Matemática – Aritmética, fração, razão, proporção.

Fração

  • Se você procurar no dicionário o significado da palavra fração, deverá encontrar entre diferentes respostas uma que é relativa ao que pretendo apresentar nesse artigo. Denominamos fração a um número representado pela divisão indicada de dois números quaisquer. Ao primeiro chamamos numerador e  é escrito acima de um traço horizontal ou inclinado para direita. Ao segundo chamamos denominador e é escrito abaixo do mesmo traço. Vejamos os exemplos:
  • \[\bbox[4px,border:2px solid Olive]{\mathbf{\color{Brown}{\frac{3}{4}}}}\]
  • \[\bbox[4px,border:2px solid Olive]{\mathbf{\color{Brown}{\frac{5}{7}}}}\]
  • \[\bbox[4px,border:2px solid Olive]{\mathbf{\color{Brown}{\frac {12}{9}}}}\]

No primeiro exemplo temos como numerador $\color{navy}{3}$ e denominador $\color{navy}{4}$. O numerador indica quantas partes do inteiro foram tomadas e o denominador, indica em quantas partes o inteiro foi dividido. Podemos representar isso graficamente assim:

Treinamento de força em casa – 5 programas, 9 exercícios vardenafil 20mg rack de musculação de tração de agachamento domyos decathlon.
Fração 3-4 de um círculo
Fração três quartos de um inteiro.

Note que o circulo foi dividido em quatro partes iguais. Destas foi removida uma parte, restando três. Essa figura representa a fração

  • $\mathbf{\color{Navy}{3/4}}$ ou $\mathbf{\color{Navy}{\frac {3}{4}}}$

A parte que foi removida corresponde ao que falta para o inteiro e é representada pela fração

  • $\mathbf{\color{Navy}{1\over 4}}$

Obs.: Repare no detalhe do numerador, partes tomadas e do denominador, partes em que foi dividido o inteiro.

Continue lendo “01.025 – Matemática – Aritmética, fração, razão, proporção.”

01.024 – Matemática – Aritmética. Potências com expoente negativo.

Radiciação, Potênciação, expoente negativo.

Já vimos que a radiciação é a operação inversa da potênciação. Lembrando:

  • Expoente igual a zero : potência de expoente zero, tem valor igual a 1.
  •  divisão de potências de mesma base: conserva a base e subtrai os expoentes. 
  • Então vejamos o seguinte:   \[\bbox[4px,border:2px solid Olive]{\color{Navy}{\frac {1}{3^5}}}\]

Como vimos acima, podemos substituir o número 1, por uma potência de qualquer base e expoente igual a 0(zero). Assim nossa expressão acima, irá ficar:

\[\bbox[4px,border:2px solid Olive]{\color{Navy}{\frac {3^0}{3^5}  = 3^{(0 – 5)}}}\]

Não resta dúvida de que a expressão \[\bbox[4px,border:2px solid Olive]{\color{Navy}{\frac{1}{3^5} = 3^{-5}}}\]

  • Podemos converter denominador com determinado expoente,em um fator acima do traço de fração, ou seja parte do numerador, trocando sinal do expoente. Mais exemplos:
  • $\color{Brown}{\frac {1}{5^3} = 5^{-3}}$
  • $\color{Brown}{\frac{1}{2^4} = 2^{-4}}$
  • $\color{Brown}{\frac{2}{3^{-2}} = 2\times {3^2}}$
  • $\color{Brown}{\frac{3^5}{5^{-4}} = {3^5}\times{5^4}}$

Não fica difícil entender que, o denominador com expoente negativo, passa para o numerador com o mesmo expoente, porém positivo. Vejam como:

  • $\color{Maroon}{\frac {1}{7^{-5}}  = 7^5 }$
  • $\color{Maroon}{\frac{1}{{11}^{-4}} = {11}^4}$

Do mesmo modo, podemos transformar uma potência com expoente negativo, em fração cujo numerador é a unidade e o denominador a mesma potência com expoente positivo. Assim:

  • $\color{Maroon}{7^{-3} = \frac{1}{7^3}}$
  • $\color{Maroon}{5^{-7} = \frac{1}{5^7}}$

Continue lendo “01.024 – Matemática – Aritmética. Potências com expoente negativo.”

01.023 – Matemática – Aritmética. Potenciação de números relativos

Potências de números relativos.

Para começar o assunto, vamos lembrar que potenciação é uma multiplicação de fatores iguais. Portanto iremos fazer uso do assunto visto no post anterior sobre a multiplicação. Vamos aos exemplos.

$$\begin{align}{(+ 3)^3}& = {(+3)\times (+3)\times (+3)}& ={+ 27}\end{align}$$

$$\begin{align}{(+ 2)^2} &= {(+2)\times(+2)}& = {+ 4}\end{align}$$

$$\begin{align}{(- 5)^2}&={(- 5)\cdot(- 5)}& = { + 25}\end{align}$$

$$\begin{align}{(-4)^3}&= {(- 4)\times(- 4)\times(- 4)}&= {- 64}\end{align}$$

$$\begin{align}{(- 2)^4}& ={(-2)\times(-2)\times(-2)\times(-2)}&= {+16}\end{align}$$

$$\begin{align}{(-3)^5}&={(-3)\times(-3)\times(-3)\times(-3)\times(-3)}&= {-243}\end{align}$$

Continue lendo “01.023 – Matemática – Aritmética. Potenciação de números relativos”

01.022 – Matemática – Aritmética. Multiplicação e divisão de números relativos

Multiplicação de relativos.

  • Números positivos.

    Vamos multiplicar os números:

  • $\bbox[4px,border:2px solid Olive]{\color{Brown}{(+5)\times (+3)}}$
    • $\color{Navy}{(+5)\times (+3) = (+5) + (+5) + (+ 5) = 15}$
  • $\bbox[4px,border:2px solid Olive]{\color{Brown}{(+4)\times(+2)}}$
    • $\color{Navy}{(+4 )\times (+2)= (+4) + (+4)= 8}$
  • Para multiplicar números positivos multiplicamos os módulos e ao resultado damos o sinal (+). 

Obs.: Temos que lembrar de uma coisa. A multiplicação é uma soma de parcelas iguais. Temos o multiplicando e o multiplicador, isto é, o número que está sendo multiplicado e o que está multiplicando. Nada impede a inversão dessas posições, de acordo com a propriedade comutativaIsso transforma a multiplicação em uma soma de tantas parcelas (multiplicando), iguais a quantidade expressa pelo multiplicador.

  • Números negativos.

  • Sejam os números:

    $\bbox[4px,border:2px solid Olive]{\color{Brown}{(- 4)\times (- 5)}}$

    $\bbox[4px,border:2px solid Olive]{\color{Brown}{(- 7)\times (- 4)}}$

    • $\color{Navy}{(-4)\times (-5) = {- (-4) – (-4) – (-4) – (-4) – (-4) = 4 + 4 + 4 + 4 + 4}= 20}$
    • $\color{Navy}{(- 7)\times (-4) = – (-7) – (-7) – (-7) – (-7) =  7 + 7 + 7 + 7 = 28}$
  • Ao multiplicar dois números negativos, multiplicamos os módulos e atribuímos o sinal (+).
  •  Resumindo podemos dizer que na multiplicação de números de sinais iguais, o resultado é positivo. 
  • Números de sinais contrários.

Sejam os números:

  • $\bbox[4px,border:2px solid Olive]{\color{Brown}{(- 6)\times (+ 3)}}$
  • $\bbox[4px,border:2px solid Olive]{\color{Brown}{(+ 7)\times (-4)}}$
  • $\color{Navy}{(- 6)\times (+3) = +(-6) + (-6) + (-6) = -6 -6 -6 = -18}$
  • $\color{Navy}{(+ 7)\times (-4) = -( +7) – (+7) – (+ 7) – (+7) = – 7 – 7 – 7 – 7 = – 28}$
  • A multiplicação de números de sinais contrários é igual ao produto dos módulos, com o sinal (-), sem importar a ordem dos fatores. 

Resumindo

  • $\bbox[4px,border:2px solid Olive]{\color{Brown}{(+)\times (+) = \{+\}}}$
  • $\bbox[4px,border:2px solid Olive]{\color{Brown}{(-)\times (-) = \{+\}}}$
  • $\bbox[4px,border:2px solid Olive]{\color{Brown}{(+)\times (-) = \{-\}}}$
  • $\bbox[4px,border:2px solid Olive]{\color{Brown}{(-)\times (+) = \{-\}}}$

Continue lendo “01.022 – Matemática – Aritmética. Multiplicação e divisão de números relativos”