046.5 – Matemática, álgebra. Produtos notáveis. Exercícios sobre cubo da diferença de dois números.

Cubo da diferença

Vamos fazer o mesmo com a regra do cubo da diferença. a)$\underbrace{{(4m – 2)}^3}$

b)$\underbrace{{(3x – 5y)}^3}$

c)$\underbrace{{(9 – 5a)}^3}$

d)$\underbrace{{(5 – 4x)}^3}$

e)$\underbrace{{(10 – 5c)}^3}$

f)$\underbrace{{(3ab – x)}^3}$

g)$\underbrace{(pq^{2} – rq)^3}$

a)$\underbrace{{(4m – 2)}^3}$

$\underbrace { {(4m)}^{3}} -\overbrace{ 3\cdot {(4m)^{2}}\cdot 2} +\underbrace{ 3\cdot{(4m)}\cdot 2^{2}} -\overbrace{ 2^{3}}$

$  64m^{3} – 96m^{2} + 48m – 8 $

b)$\underbrace{{(3x – 5y)}^3}$

$\underbrace{ (3x)^{3}} -\overbrace{ 3\cdot (3x)^{2}\cdot {(5y)}} +\underbrace{ 3\cdot{(3x)}\cdot (5y)^{2}} -\overbrace{{(5y)}^{3}}$

$ 27x^3 – 135x^{2}y + 225xy^{2} – 125y^{3} $

c)$\underbrace{{(9 – 5a)}^3}$

$\underbrace{(9)^{3}} -\overbrace{ 3\cdot (9)^2\cdot (5a)} +\underbrace{ 3\cdot 9 \cdot(5a)^{2}} -\overbrace{(5a)^{3}}$

$ 729 – 1215 a + 675 a^2 – 125 a^3 $

d)$\underbrace{{(5 – 4x)}^3}$

$\underbrace{  5^{3}} -\overbrace{ 3\cdot 5^{2}\cdot (4x)} +\underbrace{ 3\cdot 5\cdot (4x)^{2}} – \overbrace{{(4x)}^{3}}$

$  125 – 300x + 120 x^{2} – 64x^{3} $

e)$\underbrace{{(10 – 5c)}^3}$

$\underbrace{ 10^{3}} -\overbrace{ 3\cdot(5)^{2}\cdot (5c)} +\underbrace{ 3\cdot{10}\cdot {(5c)}^{2}} -\overbrace{ {(5c)}^{3}}$

$ 1000 – 375 c + 750 c^{2} – 125c^{3} $

f)$\underbrace{{(3ab – x)}^3}$

$\underbrace{{(3ab)}^{3}} -\overbrace{ 3\cdot {(3ab)}^{2}\cdot x} +\underbrace{ 3\cdot{(3ab)}\cdot x^{2}} -\overbrace{ x^{3}}$

$  27a^{3}b^{3} – 27a^{2}b^{2}x + 9 abx^{2} – x^{3} $

g)$\underbrace{{(pq^{2} – rq)}^3}$

$\underbrace{ {(pq^{2})}^{3}} -\overbrace{ 3\cdot {(pq^{2})}^{2}\cdot rq} +\underbrace{ 3\cdot {(pq^{2})}\cdot {(rq)}^{2}} -\overbrace{ {(rq)}^{3}}$

$   p^{3}q^{6} – 3p^{2}q^{5}r + 3pq^{4}r^{2} – q^{3}r^{3} $

Exercícios para você leitor treinar sua habilidade. Em caso de dúvida, não perca tempo. Faça contato e exponha sua dificuldade. Estou à disposição para ajudar.

h)$\underbrace{(7x – 5yz)^3}=?$

i)$\underbrace{(mn – r)^3}=?$

j)$\underbrace{(3a – 2bc)^4}=?$

l)$\underbrace{(u – vx)^3}=?$

m)$\underbrace{(6f – 2h)^3}=?$

n)$\underbrace{(5z – 3y)^3}=?$

o)$\underbrace{(4x – 7y)^3}=?$

Curitiba, 26 de junho de 2018

Décio Adams

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/adamsdecio

@AdamsDcio

Telefone: (41) 3019-4760

Celulares: (41) 99805-0732

046.4 – Matemática, álgebra. Produtos notáveis. Exercícios cubo da soma.

Cubo da soma de dois números

Use agora a regra do cubo da soma de dois números para obter os polinômios de quatro termos resultantes das expressões abaixo.

a)$\underbrace{{(7 +2j)}^3}$

b)$ \underbrace{{(x + 3yz)}^3}$

c)$ \underbrace{{(4f + 5m)}^3}$

d)$\underbrace{{(ma + nb)}^3} $

e)$\underbrace{{(11 + 4r)}^3} $

a)$\underbrace{{(7 +2j)}^3}$

$\underbrace{ 7^3 }+\overbrace{ 3\cdot {7^2}\cdot{2j}} +\underbrace{ 3\cdot {7}\cdot {(2j)}^2} + \overbrace{(2j)^3}$

$ 343 + 294j + 84j^2  + 8j^3 $

b)$\underbrace{ {(x + 3yz)}^3}$

$\underbrace{ x^3} +\overbrace{ 3\cdot x^{2}\cdot {(3yz)}} +\underbrace{ 3\cdot x\cdot {(3yz)}^2} +\overbrace{ {(3yz)}^3 }$

$ x^3 + 9x^{2}yz + 27xy^{2}z^{2} + 27y^{3}z^{3} $

c)$\underbrace{ {(4f + 5m)}^3}$

$\underbrace{ {(4f)}^3} +\overbrace{3\cdot{4f}^{2}\cdot{(5m)} } +\underbrace{3\cdot{(4f)}\cdot{(5m)}^2} +\overbrace{ {(5m)}^3}$

$  64f^3 + 240f^{2}m + 125m^{3} $

d)$\underbrace{{(ma + nb)}^3}$

$\underbrace{  {(ma)^3}} +\overbrace{ 3\cdot {(ma)}^{2}\cdot {(nb)}} +\underbrace{3\cdot {(ma)}\cdot {(nb)}^{2}} +\overbrace{ {(nb)}^{3} }$

$m^{3}a^{3} + 3m^{2}na^{2}b + 3mn^{2}ab^{2} + n^{3}b^{3} $

e)$\underbrace{{(11 + 4r)}^3}$

$\underbrace{ 11^3} +\overbrace{ 3\cdot 11^{2}\cdot{(4r)}} +\underbrace{ 3\cdot 11\cdot{(4r)}^{2}} +\overbrace{ {(4r)}^{3}}$

$  1331 + 1452 r + 528 r^2 + 64 r^3 $

Exercícios para você treinar. Não perca tempo. Dúvidas, entre em contato e peça esclarecimentos.

f)$\underbrace{(3a + 2b)^3}=?$

g)$\underbrace{(5 + xy)^3}=?$

h)$\underbrace{(10m + 7n)^3}=?$

i)$\underbrace{(1 + 3n^2)^3}=?$

j)$\underbrace{6v + 2z)^3}= ?$

l)$\underbrace{8r + 4q)^3}=?$

m)$\underbrace{7i + 3j)^3}=?$

Curitiba, 25 de junho de 2018

Décio Adams

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/adamsdecio

@AdamsDcio

Telefone: (41) 3019-4760

Celulares: (41) 99805-0732

046.3 – Matemática, álgebra. Produtos Notáveis. Exercícios

Produto da soma de dois números, pela sua diferença.

Usando a regra do produto da soma de dois números pela sua diferença, obtenha os binômios resultantes das multiplicações abaixo.

a)$\underbrace{{(7 + 2x)}{(7 – 2x)}}$

b)$\underbrace{{(5 – 3y)}{(5 + 3y)}}$

c)$\underbrace{{(ab^{2} + b)}{(ab^{2} – b)}}$

d)$\underbrace{{(xy + xz)}{(xy – xz)}}$

e)$ \underbrace{{(4m – 3n)}{(4m + 3n)}}$

f)$ \underbrace{{(7x^{3} + 2y^{2})}{(7x^{3} – 2y^{2})}}$

a)$\underbrace{(7 + 2x)}\overbrace{(7 – 2x)}$

$\underbrace {7^2 – {(2x)}^2}$

$ 49 – 4x^2 $

b)$\underbrace{(5 – 3y)}\overbrace{(5 + 3y)} $

$\underbrace{5^2 – {(3y)}^2 }$

$ 25 – 9y^2 $

c)$\underbrace {(ab^{2} + b)}\overbrace{(ab^{2} – b)} $

$\underbrace {{(ab^{2}}^{2} – b^2}$

$ a^{2}b^{4} – b{2} $

d)$\underbrace{(xy + xz)}\overbrace{(xy – xz)}$

$ \underbrace{{(xy)}^{2} – {(xz)}^{2}}$

${x^{2}y^{2} – x^{2}z^{2}}$

e)$\underbrace {(4m – 3n)}\overbrace{(4m + 3n)}$

$\underbrace {{(4m)}^{2} – {(3n)}^{2}}$

$  16m^2 – 9n^2  $

f)$\underbrace {(7x^{3} + 2y^{2})}\overbrace{(7x^{3} – 2y^{2})}$

$\underbrace{(7x^{3})^{2} – (2y^{2})^2}$

$  49x^{6} – 4y^{4} $

Agora é a vez do leitor/estudante. Pratique na resolução dos produtos seguintes.

g)$\underbrace{{(6 + 2xy)}{(6 – 2xy)}}=?$

h) $\underbrace{{(4x – 3y)}{94x + 3y)}}=?$

i) $\underbrace{{(a -bc)}{(a + bc)}}=? $

j) $\underbrace{{(m^2 + 3n)}{(m^2 – 3n)}}=?$

l) $\underbrace{{(uv – 5z)}{(uv + 5z)}}=? $

m) $\underbrace{{(2p – 5q)}{(2p + 5q)}}=?$

Em caso de dúvida, entre em contato para esclarecer.

Curitiba, 25 de junho de 2018

Décio Adams

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/adamsdecio

@AdamsDcio

Telefone: (41) 3019-4760

Celulares: (41) 99805-0732

046.2 – Matemática, álgebra. Exercícios de produtos notáveis. Quadrado da diferença de dois números.

Quadrado da diferença entre dois números.

Usando a regra do quadrado da diferença entre dois números, resolva as expressões abaixo.

a)${(5a – 2b)}^2$

b)$ {(a^{2}i – b^{3}j)}^2$

c)$ {(2vx – 3uy)}^2$

d)$ {(4 q^{3} – 6p^{2})}^{2}$

e)${(12 – 3 a^{3})}^2$

f)$ {(15 – 3x)}^2$

g)$ {(7x – 8y)}^2 $

Vamos à resolução.

a)$\underbrace{(5a – 2b)^2}$

$\underbrace {(5a)^2} +\overbrace{- 2\cdot {5a}\cdot{2b}} +\underbrace{(ab)^2 }$

$  25a^2 – 20ab + 4b^2 $

b)$\underbrace {(a^{2}i – b^{3}j)^2}$

$ \underbrace{ [(a^2)i]^2} -\overbrace{ 2\cdot{a^2}i\cdot{b^3}} + {(b^3)}^2$

$  a^{4}i^{2} – 2a^{2}b^{3}i + b^6 $

c)$\underbrace {(2vx – 3uy)^2}$

$ {(2vx)^2 – 2\cdot {(2vx)}\cdot{(3uy)} + {(3uy)}^2}$

$ 4v^{2}x^{2} – 12uvxy + 9u^{2}y^{2} $

d)$\underbrace {(4 q^{3} – 6p^{2})^2}$

$\underbrace{(4q^{3})^2} -\overbrace{ 2\cdot (4q^{3})\cdot(6p^{2})} +\underbrace{(6p^{2})^2}$

$  16q^6 – 48q^{3}p^{2} + 36p^{4} $

e)$\underbrace{(12 – 3 a^{3})^2}$

$ \underbrace{(12)^2} -\overbrace{ 2\cdot{12}\cdot{3a^3}} +\underbrace {(3a^{3})^2}$

$  144 – 72a^{3} + 9a^6 $

f)$\underbrace {(15 – 3x)^2}$

$ \underbrace  {(15)^2} -\overbrace{ 2\cdot {15}\cdot{(3x)}} +\underbrace {(3x)^2}$

$  225 – 90x + 9x^2 $

g)$\underbrace {(7x – 8y)^2}$

$\underbrace {(7x)^2} -\overbrace{ 2\cdot{7x}\cdot {8y}}+ \underbrace{(8y)^2}$

$ 49x^2 – 112xy + 64y^2$

Resolva você estes que vem a seguir.

h)${(3x – 5y)^2}$

i)${(5 – 8xy)^2}$

j)${(mn – 5n)^2}$

l)${(4j – 6n)^2}$

m)${(fg – 5h)^2}$

n) ${(10 – 7p)^2$

o) ${(12 – 9r)^2}$

Curitiba, 23 de junho de 2018

Décio Adams

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/adamsdecio

@AdamsDcio

Telefone: (41) 3019-4760

Celulares: (41) 99805-0732

046.1 – Matemática, álgebra. Exercícios de produtos notáveis. Quadrado da soma.

Exercícios de produtos notáveis.

Quadrado da soma de dois números

  1. Usando a regra do quadrado da soma de dois números, obtenha os trinômios quadrados perfeitos que resultam das expressões a seguir. a)${(uv + z)}^2 $ b)$ {(5m + r)}^2 $ c)$ {(7 + 2p)}^2$ d)${(a + 6b)}^2$ e)${(10x^{2 }+ y^{2})}^2$ f)${(mp^{3} + nr^{2})}^2$

Continue lendo “046.1 – Matemática, álgebra. Exercícios de produtos notáveis. Quadrado da soma.”

044.2 – Matemática, álgebra – Produtos notáveis; Quadrado da soma multiplicado pela diferença.

– Produto do quadrado da soma, pela diferença de dois números.

$\underbrace{( a + b)^2}\cdot\overbrace{(a – b)} $

Já sabemos que o quadrado da soma é um trinômio quadrado perfeito (trinômio soma). Podemos usar o resultado imediatamente.

$\underbrace{( a^{2} + 2ab + b^{2})}{\overbrace{(a – b)}} $

$ {a}{a^{2}} + {a}{(2ab)} + {a}{b^{2}} +{(-b)}{a^{2}} + {(-b)}{(2ab)} + {(-b)}{b^{2}} $

$ a^{3} + 2a^{2}b + ab^{2} – a^{2}b – 2ab^{2} – b^{3} $

$ a^{3} +\underbrace{ 2a^{2}b – a^{2}b} +\overbrace{ ab^{2} – 2ab^{2}} – b^{3} $

$ a^{3} + a^{2}b -ab^{2} – b^{3} $

Podemos enunciar a regra para obter o produto do quadrado de dois números pela sua diferença, como segue.

“O produto do quadrado de dois números, pela sua diferença é dado pelo cubo do primeiro termo, mais o quadrado do primeiro multiplicado pelo segundo, menos o primeiro multiplicado pelo quadrado do segundo, menos o cubo do segundo termo”.

Vamos tentar por em prática? Seja:

$\underbrace {{(2x + y)}^{2}}\cdot\overbrace{(2x – y)} $

${(4x^{2} + 4xy + y^{2})}{(2x – y)} $

$ {(2x)}^{3} + {(2x)}^{2}{y} – 2x{y^{2}} – {y^{3}} $

$ {8x^3 + 4x^{2}y – 2xy^2 – y^3 }$

Vamos exercitar um pouco? Faz bem, não é verdade?!

a) $ {(3x – y)^2}{(3x + y)}= ?$

b) ${(6 – 2z)^2}{(6 + 2z)}= ? $

c) ${(ab – m)^2}{(ab + m)}- ? $

d) ${(5n – 2m)^2}{(5n + m)}= ?$

Curitiba, 20 de junho de 2018

Décio Adams

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/adamsdecio

@AdamsDcio

Telefone: (41) 3019-4760

Celulares: (41) 99805-0732

044.3 – Matemática, álgebra – Produtos notáveis; Produto do quadrado da diferença pela soma de dois números.

– Produto do quadrado da diferença entre dois números pela sua soma.*

$\underbrace{( a – b )^{2}}\cdot\overbrace{(a + b)} $

O procedimento é semelhante ao anterior.

$\underbrace{( a^{2} – 2ab + b^{2})}\cdot\overbrace{(a + b)} $

$ a^{2}a + {(- 2ab)}{(a)} + ab^{2} + a^{2}b + {(- 2ab)}{(b)} + {(b^{2})}{b} $

$ a^{3} – 2a^{2}b + ab^{2} + a^{2}b – 2ab^{2} + b^{3} $

$ a^{3} +\underbrace{-2a^{2}b + a^{2}b} +\overbrace{ ab^{2} -2ab^{2}} + b^{3} $

$ a^{3} – a^{2}b – ab^{2} + b^{3}$

$ a^{3} – a^{2}b – ab^{2} + b^{3} $

“O produto entre o quadrado da diferença entre dois números e a sua soma, é igual ao cubo do primeiro termo, menos o produto entre o quadrado do primeiro e o segundo termo, menos o produto entre o primeiro termo e o quadrado do segundo, mais o cubo do segundo termo”.

Obs.: Para memorizar, fica bastante fácil. Basta observar que os termos são obtidos de mesmo modo, apenas há a diferença entre os sinais dos termos. Se conseguir criar um mecanismo que permita recordar essas sequências, terá meio caminho andado para lembrar dos enunciados. 

Vamos por em prática.

$\underbrace {( ma + n)}\cdot\overbrace {(ma – n)^{2}} $

$\underbrace{( ma + n)}\cdot\overbrace{[(ma)^{2} – 2mna + n^{2}]} $

$ m^{3}a^{3} – 2m^{2}na^{2} – 2mn^{2}a + n^{3} $

Exercícios. Efetuar as multiplicações a seguir.

a)${(ab – c)^2}{(ab + c)} = ?$

b)${ (2m – 3n)^2}{(2m + 3n)}- ? $

c)${(4 – 2x)^2}{(4 + 2x)}= ?$

d)${(rs – tu)^2}{(rs + tu)}= ?$

e)${(2v – 3z)^2}{(2v + 3z)}= ?$

Vamos deixar os demais exercícios para um momento próximo. Esses são trabalhosos, mas em momentos de aplicação, ajudam a economizar um bocado de tempo no desenvolvimento de expressões maiores. Sem esquecer de um assunto que vem pouco à frente, que é a fatoração, onde fazemos o processo inverso do que fazemos aqui.

Curitiba, 20 de junho de 2018

Décio Adams

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/adamsdecio

@AdamsDcio

Telefone: (41) 3019-4760

Celulares: (41) 99805-0732

01.007 – Matemática, aritmética – Multiplicação II

Avançando com a multiplicação.

  • No post anterior, aprendemos a multiplicar os números com apenas um algarismo. Espero ter conseguido mostrar como se procede e que tenha dominado esse conteúdo. Havendo alguma dúvida, por favor, peça maiores explicações, fazendo um comentário expondo sua dificuldade. E quando os fatores forem números com mais de um algarismo, como iremos proceder? A operação é a mesma, apenas torna-se difícil fazer a representação concreta de conjuntos, depois contar os elementos para obter a resposta. Mas não se aflija. Novamente usaremos a escrita na forma de colunas e multiplicaremos todos os algarismos de um fator, por todos os algarismos do outro fator, escrevendo os resultados sob as colunas correspondentes. Se houver mais de uma linha, adicionaremos os valores de cada coluna, partindo da direita para a esquerda. A soma encontrada será o produto dos números. Nada melhor do que mostrar como se procede, com um bom exemplo resolvido.
  • $$\color{Brown}{18\times 4 = ?}$$

Começamos da direita para esquerda, multiplicando ${4\times 8 = 32}$. O produto resultou em mais de uma dezena. Colocamos o algarismo das unidades (2), na direita, abaixo do quatro e reservamos as (3) dezenas para serem adicionadas ao resultado da multiplicação de ${4\times 1 = 4}$; adicionamos as dezenas reservadas ${4 + 3 = 7}$. Colocando o $7$ à esquerda do dois, teremos o resultado da multiplicação.


$$\color{Red}{4\times 18 = 72}$$

Um outro exemplo: $\color{Brown}{6\times 35 = ?}$


Começando novamente da direita: ${6\times 5 = 30}$. O algarismo das unidades é (0) e reservamos três dezenas para o próximo passo. Fazendo ${6\times 3 = 18}$. Adicionamos as três dezenas e temos ${18 + 3 = 21}$, que será escrito à esquerda do (0) das unidades. Teremos:

$$\color{NavyBlue}{6\times 35 = 210}$$

Continue lendo “01.007 – Matemática, aritmética – Multiplicação II”

01.006 – Matemática – Multiplicação.

Crescei e multiplicai-vos

É isso que o Criador disse aos primeiros homens a caminhar sobre a Terra. Mas a nossa multiplicação aqui é um pouco diferente. Vamos multiplicar números, começando por entender o que significa essa operação.  Observe o exemplo da figura.

Três conjuntos de dois elementos reunidos, formam a soma de três parcelas iguais. Isto e uma multiplicação.
  • $$\color{Red}{{3\times 2} = 6}$$
  • Lemos aqui: “Três vezes dois é igual a seis”.
  • Os dois números multiplicados recebem o nome de \color{Sepia}{fatores}.
  • $$\color{Blue}{{ 2 + 2 + 2} = 6}$$

    Note que o conjunto de dois elementos foi adicionado três vezes, ou seja, temos uma adição de parcelas iguais, onde cada parcela tem dois elementos. Sempre que surge a ocasião de simplificar a forma de escrever, traduzir em palavras ou símbolos uma sentença matemática, nós o fazemos. Nesse caso, fazemos a a multiplicação e fica assim:

A multiplicação na verdade é nada mais nada menos que uma adição de parcelas iguais. 

É importante lembrar desse detalhe, pois  será muito útil em situações que virão pela frente.

Dois conjuntos de três elementos reunidos formam a multiplicação de $3$ por $2$.
  • $$\color{Red}{{3 + 3} = 6}$$
  • $$\color{Spia}{2\times 3 = 6}$$
Continue lendo “01.006 – Matemática – Multiplicação.”

01.005 – Matemática – Aritmética – Subtração.

Vamos subtrair

Começaremos por dizer que a subtração é a operação inversa da adição. Se na adição nós juntamos, reunimos os elementos de mais de um conjunto, na subtração fazemos o contrário. Retiramos, diminuimos os elementos de um conjunto(subtraendo), dos elementos de outro conjunto(minuendo) normalmente maior.  Por exemplo:

  • ${(♠, ♠, ♠, ♠, ♠, ♠, ♠)} – {(♠, ♠, ♠)} $
  • $= {(♠, ♠, ♠, ♠,\underbrace{ ♠, ♠, ♠})} ={(♠, ♠, ♠, ♠)}$
  •              7      –      3     =  4

Na forma de conjuntos, basta contar os elementos a serem subtraídos(subtraendo), retirando-os do conjunto (minuendo) e teremos um conjunto que é igual a diferença entre os dois. No exemplo temos 7 elementos no minuendo e 3 no subtraendo. Restaram 4 elementos no conjunto diferença. Para conferir se está certo, basta contar os elementos do resto, junto com os elementos do subtraendo e deveremos encontrar o minuendo. Você pode usar os dedos das suas mãos, dos pés, outros objetos para formar os conjuntos que ajudarão a efetuar essas operações. Com isso logo, logo, saberá de cor e salteado a diferença entre esses números pequenos, ficando mais fácil obter o resultado.

Continue lendo “01.005 – Matemática – Aritmética – Subtração.”