Matemática – Teoria dos conjuntos.

Conjuntos de números.

  • A necessidade de contar ou quantificar as coisas, como número de animais caçados, composição do rebanho com o surgimento da pecuária, volume de cereais e outros produtos colhidos. Até o número de soldados de um exército, levou o homem, há muito tempo, a criar números e símbolos para representá-los. Existiu, ao longo da história, uma imensa variedade de sistemas de numeração. Muitos deles associados a alguma coisa ou até a uma parte do próprio corpo.
  • Assim, os indígenas que habitavam a América, utilizavam um sistema de numeração de base 5(cinco), que é o número de dedos de uma mão. Os povos fenícios da antiguidade, usaram e espalharam por todos os lugares onde comerciavam, seu sistema de numeração  sexagesimal ,  isto é, de base 60. É deles que vem a divisão de uma hora em 60 minutos, e um minuto em 60 segundos. Uma circunferência é dividida em 360º, cada grau dividido em 60′ e cada minuto em 60″.
  • Os sistemas de informática, são baseados na numeração de base 2 (dois) ou numeração binária. Associada, inicialmente à uma lâmpada apagada, representando o número 0(zero) e uma lâmpada acesa representando o número 1(hum)

Continue lendo “Matemática – Teoria dos conjuntos.”

Matemática – Aritmética. Divisão exata e aproximada de números.

Divisão decimal aproximada.

Quando estudamos a divisão, vimos que grande parte das vezes essa operação não é exata, sobrando ao final do processo, um resto menor que o divisor. Naquele momento deixamos de efetuar esse complemento da operação. Ficamos com o resultado:

  • $\color{navy}{quociente\cdot divisor + resto = dividendo}$

Agora, vamos determinar o resultado da operação, com uma aproximação na forma de número decimal. Para isso recorremos à colocação de uma vírgula após o último algarismo inteiro obtido no quociente e acrescentamos um zero no resto. A partir daí tentamos continuar a divisão. Se ainda não for possível, acrescentamos um zero ao quociente e mais outro no resto. Podemos continuar assim indefinidamente. Talvez em algum momento ocorra uma divisão exata, ou então teremos uma dízima periódica, quando um ou mais algarismos começam a se repetir no quociente. O melhor de tudo é fazer isso na prática. 

Continue lendo “Matemática – Aritmética. Divisão exata e aproximada de números.”

Matemática – Aritmética – Notação exponencial ou científica

Epa! Que bicho é esse?

A matemática é aplicada em todos os campos da atividade humana. Não raro temos a necessidade de escrever números extremamente pequenos e outras tantas vezes nos deparamos com outros números imensamente grandes. Tanto em uma situação, quanto em outra, acabamos ficando com dificuldades de exprimir ou mesmo fazer a leitura correta desses números extremos. 

Continue lendo “Matemática – Aritmética – Notação exponencial ou científica”

067.11 – Matemática, álgebra. Cologaritmo e antilogaritmo.

Logaritmos

Cologaritmo

Vimos que se ${0 < a ≠ 1}$ e ${b > 0}$, denominamos logaritmo de ${b}$ na base ${a}$ ao expoente de ${a}$ que resulta na potência igual a ${b}$.

Já o cologaritmo é o oposto ou simétrico do logaritmo. Assim: ${colog_a{b} = – log_a{b}}$

${colog_a{b} = (-1)\cdot{log_a{b}}} ⇔ {colog_a{b} = log_a{b}^{-1}}$

${colog_a{b} = log_a{1\over b}}$

Fica demonstrado que o cologaritmo de um número em determinada base é igual ao logaritmo de seu inverso na mesma base.

Continue lendo “067.11 – Matemática, álgebra. Cologaritmo e antilogaritmo.”

067.10 – Matemática, álgebra. Equações logarítmicas

Equações logarítmicas

Há várias formas de equações envolvendo logaritmos. Vamos ver o primeiro deles.

I) Igualdade entre logaritmos de mesma base, como

${log_a{x} = log_a{y}}  ⇔ { x = y}$

Exemplo.

${log_5\underbrace{{(2x + 4)}} =  log_5\underbrace{{(3x + 1)}}}$

${2x + 4 = 3x + 1} ⇔ {2x – 3x = 1 – 4}$

${-x = -3} ⇔ {-x\cdot{(-1)} = -3\cdot{(-1)}}$

${x = 3} ⇔ {S = \{3\}}$

Continue lendo “067.10 – Matemática, álgebra. Equações logarítmicas”

067.9 – Matemática, álgebra. Condições de existência dos logaritmos.

Estudo da existência dos logaritmos.

 

Vimos no início do nosso estudo dos logaritmos que

${log_a{b} = x}$, tem como condição de existência que tenhamos:

${a > 0,  a ≠ 1}$ ⇔ ${0 < a ≠ 1}$

${b > 0}$

Se estas condições não forem satisfeitas o logaritmo não existe. Isso nos leva a um tipo de expressão em que precisamos analisar uma ou mais situações e estabelecer a condição de existência daquele(s) logaritmo(s) especificamente.

Continue lendo “067.9 – Matemática, álgebra. Condições de existência dos logaritmos.”

067.8 – Matemática, álgebra. Expressões logarítmicas.

Expressões logarítmicas.

Vamos exercitar.

 Desenvolver as expressões logarítmicas.

a) ${log_a{({m\cdot n})^v}}$

O expoente do logaritmando, irá multiplicar o logaritmo

${log_a{({m\cdot n})^v}} = {v\cdot{log_a{({m\cdot n})}}}$

Aplicando a propriedade da multiplicação, transformamos o logaritmo da multiplicação e adição dos logarítmos.

${v\cdot({log_a{m} + log_a{n}})} = v\cdot{log_a{m}} + v\cdot {log_a{n}}$

b)${log_x{({{p}\cdot {q}\over {r}})^u}}$

O expoente do logaritmando colocamos novamente multiplicando o logaritmo.

${ u\cdot{log_x{({{p}\cdot{q}\over{r}})}}} = {u\cdot{[log_x{({p}\cdot{q}) – log_x{r}]}}} = {u\cdot{[log_x{p} + log_x{q} – log_x{r}]}}$

Continue lendo “067.8 – Matemática, álgebra. Expressões logarítmicas.”

067.7 – Logaritmos naturais ou neperianos; logaritmos decimais

Logaritmos

Logaritmos neperianos. 

São também denominados logaritmos naturais e se originaram dos trabalhos desenvolvidos e publicados por John Neper (Napier). Mais tarde a base desses logaritmos teve seu valor determinado por Euler, sendo usada largamente em diferentes áreas da atividade humana. Essa base é simbolizada pela letra:

${ e ≅ 2,71828183}$

Na prática usamos apenas a parte inteira e as duas primeiras casas decimais.

${ e ≅ 2,71}$

Continue lendo “067.7 – Logaritmos naturais ou neperianos; logaritmos decimais”

067.6 – Matemática, álgebra. Logaritmos. Mudança de base um logaritmo.

Logaritmos com mudança de base

 

Ao longo dos estudos empregando logaritmos, nos deparamos com situações em que é necessário mudar a base. Como faremos isso?

Tomemos como exemplo o seguinte:

$ {log_8{1024}} $

Decompondo o logaritmando em fatores primos, encontraremos: $ {1024 = 2^{10}}$

Também sabemos que ${ 2^{3} = 8} $.

Assim podemos escrever: $ {log_8{(8^{3}\cdot 2)}} $

Daí podemos tirar que: ${log_8{8^3} + log_8{2}}$

Continuamos: $ {3\cdot {log_8{8}} + log_8{2}}$

$ {3\cdot {1} } + log_8{2} = 3 + log_8{2}$

Sabemos que: $ {2 = \sqrt[3]{8}}$

Logo: ${ 2 = 8^{{1}\over{3}}} $

Então podemos dizer: $ 3 + log_8{2} = 3 + log_8{8^{{1}\over{3}}} = {3 + {{1\over3}}\cdot {log_8{8}}}$

$ {3 + {{1}\over {3}}\cdot{1}} =  {{{3\cdot 3} + 1}\over{3}}$

$ {{9 + 1} \over{3}} = {{10}\over{3}} $

Continue lendo “067.6 – Matemática, álgebra. Logaritmos. Mudança de base um logaritmo.”

067.5 – Matemática, álgebra. Logaritmos. Logaritmo de um radical

Logaritmos

Logaritmo de radical

Vamos recordar de uma transformação possível nos radicais. Vimos lá que:

$\sqrt[a]{b^n} = b^{{n}\over {a}}$

Obs.: Convertemos o radical em uma potência de expoente fracionário. O índice do radical é o denominador do expoente e o expoente do radicando é o numerador.

Isso nos permite aplicar esse recurso na logaritmação de radicais. Não esquecendo que o numerador da fração/expoente é o expoente do radicando e o denominador é o índice do radical. Assim teremos:

a) $ log_x{\sqrt[a]{b^n}} = log_x{b^{{n}\over {a}}} = {{n}\over {a}}\cdot log_x{b} $

b) $ log_x{\sqrt[u]{y}} = log_x{y^{{1}\over{u}}} = {{1}\over{u}}{log_x{y}} $

c) $ log_a{\sqrt[v]{z^u}} = log_a{z^{{v}\over{u}}} = {{v}\over{u}}{log_a{z}}$

d)$ log_3{\sqrt[5]{15^3}} $

$ log_3{15^{{5}\over{3}}} = {{3}\over{15}}{log_3{5}} = {{1}\over{5}}{log_3{5}}$

Chegou sua vez de exercitar, tomando os exemplos como base.

e)$ log_7{\sqrt[5]{7^4}}$

f) $log_{10}{\sqrt[6]{1000}}$

g)$ log_{12}{\sqrt[8]{{13}^6}} $

h) $ log_3{\sqrt[5]{9^2}}$

i) $ log_a{\sqrt[m]{b^n}} $

j) $ log_a{\sqrt[p]{c^{2p}}} $

l) $ log_h{\sqrt[w]{g^v}} $

m) $ log_4{\sqrt[3]{9^5}}$

Enquanto você resolve os exercícios, vou continuar a preparar mais um post, dando outro passo nesse assunto. Se tiver dúvidas, peça esclarecimentos por um dos canais abaixo.

Curitiba, 02 de julho de 2018

Décio Adams

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/adamsdecio

@AdamsDcio

Telefone: (41) 3019-4760

Celulares: (41) 99805-0732