01.065 – Matemática, Álgebra. Inequações 2º Grau (Cont. II)

Mais um pouco desse assunto.

No último post analisamos as inequações que têm apenas um valor que torna nula a expressão. Creio que nem é necessário falar daquelas em que as raízes não pertencem ao conjunto dos Reais. Vamos ver como ficam as incompletas, do tipo

  • \[\bbox[4px,border:2px solid maroon]{\color{Blue}{ ax^2 + bx \not = 0}}\]
  • \[\bbox[4px,border:2px solid maroon]{\color{Blue}{ ax^2 + c \not= 0}}\]

Para começar vamos estudar a inequação

  • \[\bbox[4px,border:2px solid maroon]{\color{Blue}{ 2x^2 – 32 \lt 0}}\]. Não temos o termo com a variável $\color{Navy}{x}$ apresentando o expoente $\color{Navy}{1}$. Portanto podemos resolver a questão, pelo método abreviado.

Continue lendo “01.065 – Matemática, Álgebra. Inequações 2º Grau (Cont. II)”

01.064 – Matemática, Álgebra. Inequações 2º Grau (continuação)

Pensou que acabou?

  • Ainda tem mais, bem mais. No post anterior nós vimos o caso das inequações em que existem dois valores que anulam a sentença da inequação. Mas existem aquelas em que temos duas raízes iguais, os que têm duas raízes simétricas, não têm raiz uma vez que recai num radical de índice par com radicando negativo.
  • Um passo de cada vez. Seja a inequação $\bbox[5px,border:2px solid maroon]{\mathbf{\color{Blue}{ x^2 -6x + 9 \lt 0}}} $.

Continue lendo “01.064 – Matemática, Álgebra. Inequações 2º Grau (continuação)”

01.062 – Matemática, Álgebra. Inequações do 1º grau – Exercícios resolvidos.

Vamos “malhar”?

  • Determine o conjunto verdade das inequações a seguir.
  • $\bbox[5px,border:2px solid brown]{\color{blue}{ 4x – 7 \lt 2x + 1}} $

Observamos que há termos com a variável $x$ tanto no primeiro como no segundo membro da inequação. Igualmente termos independentes da variável. Para obtermos a solução precisamos deixar a variável no primeiro membro e os termos independentes no segundo. Isso fazemos adicionando os simétricos em ambos os lados. Assim:

\[{4x – 7} \lt {2x + 1} \]

\[ \underbrace{\color{blue}{( 4x – 2x)}} +\underbrace{\color{maroon}{ (- 7 + 7) }} \lt  \underbrace{\color{blue}{ (2x – 2x)}} + \underbrace{\color{maroon}{( + 1 + 7) }} \]

\[2x + 0 \lt 0 + 8 \]  \[{ 2x } \lt { + 8} \]

Para concluir, vamos dividir ambos os membros pelo fator $2$, o que nos deixará a variável $x$ isolada no primeiro membro da inequação. Não há necessidade de mudança de sentido, pois ambos os termos são positivos.

\[ \frac{2x}{2} \lt \frac{+8}{2} \]

\[ x \lt 4 \]

Portanto

\[\bbox[5px,border:2px solid brown]{\color{navy} {V} = \color{navy}{\{ x\in R | x \lt +4 \}}}\]

Rendered by QuickLaTeX.com

  • $\bbox[5px,border:2px solid brown]{\color{blue}{ 11 + 3x \gt – 8}} $

Vamos isolar $x$ no primeiro membro, adicionando $ – 11$ aos dois membros da inequação.

\[\overbrace{\color{maroon}{ (11 – 11)}} + 3x  \gt \overbrace{\color{maroon}{ (-8 -11)}} \] \[ 0 + 3x \gt – 19 \] \[ {3x} \gt {- 19} \]

Dividindo ambos os membros por $3$, iremos isolar $x$ no primeiro membro.

\[ \frac{ (3x) }{ 3 } \gt \frac { (-19) }{ 3 } \] \[x \gt {(-19/3)} \]

\[\bbox[4px,border:2px solid brown]{\color{navy} { V = \left\{ x \in R | x \gt \left(-\frac {19}{3}\right)\right \}}} \]

Rendered by QuickLaTeX.com

  • $ \bbox[4px,border:2px solid brown]{\color{navy}{- 6 + 2x \ge 3x + 1}}$

Temos que adicionar $\color{brown}{+6}$ e $\color{brown}{-3x}$ a ambos os membros da inequação, para isolar a variável $\color{brown}{x}$ no primeiro membro.

\[ \underbrace{\color{maroon}{ (- 6 + 6)}} +\underbrace{\color{blue}{(2x – 3x)}} \ge \underbrace{\color{blue}{(3x – 3x)}} + \underbrace{\color{maroon}{(1 +6)}}\]

\[ 0 – x \ge 0 + 7 \] \[ {-x} \ge  7 \]

Multiplicamos por $\color{brown}{ -1}$ para deixar $\color{brown}{x}$ com sinal positivo, invertendo dessa maneira a desigualdade.

\[{-x}\cdot {(-1)} \ge {+7}\cdot {(-1)}\] \[ x \le (-7) \]

\[\bbox[4px,border:2px solid brown]{\color{navy}{V = \{ x \in R | x \le (-7) \}}}\]

Rendered by QuickLaTeX.com

  • $\bbox[5px,border:2px solid brown]{\color{navy}{ 6 \le 5 – 3x}} $

Para trazermos a variável para o primeiro membro, adicionamos seu simétrico $\color{brown}{3x}$, bem como o simétrico $\color{brown}{-6}$ do termo independente. Obtemos assim:

\[ \underbrace{\color{maroon}{(6 – 6)}} + 3x \le \underbrace{\color{maroon}{ (5 – 6)}} + \underbrace{\color{blue}{(-3x + 3x)}} \]

\[ 0 + 3x \le -1 + 0 \] \[ 3x \le -1 \]

Dividindo por $\color{brown}{3}$ ambos os membros, temos:

\[ \frac{3x}{3} \le \frac{(-1)}{3} \]

\[ x \le \left(-{\frac{1}{3}}\right) \]

\[\bbox[5px,border:2px solid brown]{\color{navy}{ V = \left\{ x \in R | x \le \left({-\frac{1}{3}}\right) \right\}}} \]

Rendered by QuickLaTeX.com

  • $\bbox[5px,border:2px solid brown]{\color{navy}{ 3y + 4 \le 7 – y}} $

Adicionando a ambos os membros da inequação os simétricos $\color{brown}{ -4}$ e $\color{brown}{+y}$, teremos:

\[ \underbrace{\color{blue}{(3y + y) }} + \underbrace{\color{maroon}{(4 – 4)}} \le \underbrace{\color{maroon}{(7 – 4)}} + \underbrace{\color{blue}{(-y + y)}} \]

\[ 4y + 0 \le 3 + 0 \]

\[ 4y \le 3 \]

Dividindo ambos os membros por $\color{brown}{4}$, teremos:

\[ \frac{4y}{4} \le \frac{3}{4} \]

\[ y \le \left(\frac{3}{4}\right) \]

\[\bbox[4px,border:2px solid brown]{\color{navy}{ V = \left\{ x \in R | x \le \left({\frac{3}{4}}\right)\right\}}}\]

Rendered by QuickLaTeX.com

  • $\bbox[5px,border:2px solid brown]{\color{blue}{ 15 – 4x \lt 11 + x}}$

Começamos por adicionar aos dois membros os simétricos $\color{brown}{-x}$ e $\color{brown}{-15}$.

\[\underbrace{\color{maroon}{(15 – 15)}} + \underbrace{\color{blue}{(-4x – x)}} \lt \underbrace{\color{maroon}{(11 – 15)}} + \underbrace{\color{blue}{(x – x)}} \]

\[ 0 – 5x \lt -4 + 0 \] \[ -5x \lt -4 \]

Dividindo ambos os membros por $\color{brown}{-5}$, isolamos $\color{brown}{x}$ e invertemos a desigualdade de $\color{brown}{\lt}$ para $\color{brown}{\gt}$.

\[\frac{-5x}{-5} \lt \frac{-4}{-5} \] \[ x \gt \left(\frac{4}{5}\right) \]

\[\bbox[5px,border:2px solid brown]{\color{navy}{ V = \left\{ x \in R | x \gt \left(\frac{4}{5}\right) \right\}}}\]

Rendered by QuickLaTeX.com

  • $\bbox[5px,border:2px solid brown]{\color{blue}{ 6x + 5\gt 4x – 7}}$

Para isolarmos $\color{brown}{x}$ no primeiro membro, temos que adicionar aos dois os simétricos de $\color{brown}{4x}$ e $\color{brown}{5}$, ficando assim:

\[\underbrace{\color{blue}{6x -4x}} + \underbrace{\color{maron}{ 5 – 5}} \gt \underbrace{\color{blue}{4x – 4x}} + \underbrace{\color{maroon}{(-7 – 5)}} \]

\[ 2x + 0 \gt 0 – 12 \] \[ 2x \gt -12 \]

Dividimos por $\color{brown}{2}$ ambos os membros e teremos:

\[ \frac{2x}{2} \gt \frac{-12}{2} \] \[ x \gt -6 \]

\[\bbox[5px,border:2px solid brown]{\color{navy}{ V = \{ x \in R | x \gt – 6 \}}} \]

Rendered by QuickLaTeX.com

  • $\bbox[5px,border:2px solid brown]{\color{blue}{ 2 + 7x \gt 6x + 4}} $

Adicionando $\color{brown}{-2}$ e $\color{brown}{-6x}$ aos dois membros isolamos $\color{brown}{x}$ no primeiro membro.

\[ \underbrace{\color{maroon}{ 2 – 2}} + \underbrace{\color{blue}{7x – 6x}} \gt \underbrace{\color{blue}{6x – 6x}} + \underbrace{\color{maroon}{4 – 2}} \]

\[ 0 + x \gt 0  + 2 \]

\[ x \gt 2 \]

\[\bbox[5px,border:2px solid brown]{\color{navy}{ V = \{ x \in R| x \gt 2\}}} \]

Rendered by QuickLaTeX.com

Curitiba, 02 de junho de 2016

Curitiba, 07 de janeiro de 2018 (Republicação)

Décio Adams

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celulares: (41) 99805-0732

01.060 – Matemática, Álgebra. Sistemas de equações com duas incógnitas. Exercícios.

Resolvendo os exercícios.

  1. Determine o conjunto verdade dos sistemas de equações a seguir.

a) $$ 3x – 2y = 10 $$ $$ x + y = 13 $$ O caminho mais fácil é exprimir o valor de uma das incógnitas em função da outra, partindo da segunda equação. $$ x + y = 13$$ $$ x – x + y = 13 – x $$ $$ y = 13 – x $$ Substituindo da outra equação, teremos: $$ 3x – 2\cdot{(13 – x)} = 10 $$ $$ 3x -26 + 2x = 10 $$ $$ (3x + 2x) – 26 + 26 = 10 + 26 $$ $$ 5x = 36 $$ $$ {{5x}\over 5} = {{36}\over 5} $$ $$ x = 7,2$$ Substituindo na outra expressão: $$ y = 13 – 7,2 $$ $$ x = 5,8 $$  $$ V = \{(5,8; 7,2)\} $$

Continue lendo “01.060 – Matemática, Álgebra. Sistemas de equações com duas incógnitas. Exercícios.”

01.059 – Matemática, Álgebra. Sistemas de equações com duas incógnitas.

Sistemas com duas incógnitas

Até o último post falando de equações, vimos somente situações em que aparece apenas uma incógnita. E se nos depararmos com um problema em que haja duas incógnitas, como iremos proceder?

Com as ferramentas, ou seja, métodos de resolução vistos até agora, fica complicado. No entanto existem modos de chegarmos a uma resposta satisfatória. Depende das informações que tivermos a respeito dessas incógnitas. Geralmente é necessário saber de duas relações entre essas elas. Isso nos permitirá escrever duas equações envolvendo essas incógnitas e assim formaremos um sistema de duas equações. De posse dessas duas equações, aplicando o raciocínio adequado, poderemos determinar o valor das incógnitas. Nesse raciocínio iremos utilizar as propriedades que estudamos anteriormente para as operações, as expressões algébricas, enfim tudo que vimos até o momento.

Continue lendo “01.059 – Matemática, Álgebra. Sistemas de equações com duas incógnitas.”

01.058 – Matemática – Álgebra, Equação bi-quadrada.

Equação bi-quadrada?

Achou engraçado o nome?! Pois é, apesar do nome é um tipo de equação do 4º Grau, porém incompleta. Vejamos. Uma equação do 4º Grau, completa fica assim em sua forma geral.

$\bbox[silver,5px,border:2px solid aqua]{ ax^4 + bx^3 + cx^2 +dx + e = 0}$

Grande, não é?! Essas equações são resolvidas por um método diferente e apenas para adiantar, elas podem ter até quatro raízes reais. Mas ainda não é o momento de estudarmos coisas desse nível.

Então o que é essa tal de equação bi-quadrada? Eu disse no começo que ela é uma equação incompleta do 4º Grau. Sua forma geral pode ser apresentada assim:

$\bbox[silver,5px,border:2px solid aqua]{ax^4 + bx^2 + c = 0} $

Ela não tem os termos onde a variável x aparece com expoente ímpar

$\bbox[silver,5px,border:2px solid aqua]{(x^3 ; x)}$

Continue lendo “01.058 – Matemática – Álgebra, Equação bi-quadrada.”

01.057 – Matemática, Álgebra. Equações incompletas do 2ºGrau, exercícios resolvidos.

Resolvendo exercícios

Determine o conjunto verdade das equações incompletas do segundo grau que seguem.

a) $ 6x² = 0 $

Um produto é nulo se um dos fatores é nulo. No caso, temos dois fatores onde um é igual a seis (6) e o outro $ x^2$. O único fator que pode ser nulo é o segundo e portanto:

$ x^2 = 0 $

$ x = 0 $

$ V = \{0\} $

b) $ x² – 16 = 0 $

Podemos aplicar o método abreviado ou reduzido na resolução dessa equação. Assim:

$ x^2 – 16 = 0 $

${x^2 – 16 +16 = 0 + 16}$

$ x^2 = 16 $

$\sqrt[2]{x^2} = \sqrt[2]{16} $

$ x = \pm {4 } $

$ V = \{ – 4, + 4\} $

c) $ 5x² – 125 = 0 $

O mesmo caso do exercício anterior.

$ 5x^2 – 125 = 0 $

$ 5x^2 – 125 + 125 = 0 + 125 $

$ 5x^2 = 125 $

$ {{5x^2}\over 5} = {125\over {5}} $

$ x^2 = 25 $

$\sqrt[2]{x^2} = \sqrt[2]{25} $

$x = \pm 5 $

$ V = \{ -5, + 5\} $

d) $ 2x² + 10x = 0$

Esta é uma equação incompleta do tipo em que o termo independente c é nulo. O procedimento agora é diferente, como vimos na parte explicativa.

$ 2x^2 + 10x = 0 $

Entre os dois termos da equação existe um fator comum

$ 2x $

Vamos colocar em evidência esse fator comum, dividindo os dois membros por esse mesmo fator.

$ {2x} [{{2x^2 + 10x)}\over 2x}] = 0 $

$ 2x{(x + 5)} = 0 $

Para concluir, vamos igualar os dois fatores a zero e obter as duas raízes correspondentes.

$ 2x = 0 $

${2x\over 2} = {0\over 2}$

$ x = 0$

$ x + 5 = 0 $

$ x + 5 – 5 = 0 – 5 $

$ x = -5 $

$ V = \{-5, 0\} $

e) $ 7x² – 49x = 0$

O mesmo caso anterior. O fator comum entre os dois termos da equação é

$ 7x $

Colocando em evidência:

${7x}\cdot[{{7x^2 – 49x}\over 7x}] = 0 $

$ 7x[ x – 7] = 0 $

Igualando os dois fatores a zero temos:

$ 7x = 0 $

${7x\over 7} = {0\over 7}$

$ x = 0$

$ x – 7 = 0 $

$ x – 7 + 7 = 0 + 7 $

$ x = 7 $

$ V = \{0, 7\} $

f) $ x² + 4x = 0 $

Fator comum entre os dois termos $ x $. Colocando em evidência:

$ x\cdot[{{x^2 + 4x}\over x}] = 0 $

$ x\cdot [x + 4] = 0 $

Igualando os fatores à zero, teremos:

$ x = 0$

$ x + 4 = 0 $

$ x + 4 – 4 = 0 – 4$

$ x = -4$

$ V = \{-4, 0\} $

g) $ 3x² + 18x = 0$

Mais um do mesmo tipo. Fator comum é $ 3x $ Colocamos em evidência:

${3x}\cdot({{3x^2 + 18x}\over {3x}}) = 0 $

$ 3x\cdot({x + 6}) = 0 $

$ 3x = 0 $

$ x = 0 $

$ x + 6 = 0 $

$ x + 6 – 6 = 0 – 6$

$ x = -6 $

$V = \{-6, 0\} $

h) $ 2x² + 12 = 0$

Voltamos ao exemplo visto primeiro. Vamos resolver.

$2x^2 + 12 – 12 = 0 -12 $

$2x^2 = -12 $

${{2x^2}\over 2} = {-12\over 2} $

$ x^2 = -6 $

${ \sqrt[2]{x^2}} = {\sqrt[2]{-6}} $

$ {V = \emptyset} $

i) $ 10 x² – 90 = 0 $

Vamos resolver.

${ 10 x^2 – 90 + 90 = 0 + 90 }$

$ {10x^2 = 90 }$

$ {{10x^2}\over 10} = {{90}\over 10} $

${ x^2 = 9 }$

${\sqrt[2]{x^2} = \sqrt[2]{9} }$

$ x = \pm 3 $

$ V = \{-3, +3\} $

j) $ {3x^2 = 0 }$

Outro exemplo da equação que só tem o termo em $x^2$. Um produto só pode ser nulo se um dos fatores for nulo. Nesse caso, o fator que pode ser nulo é $x^2$. Portanto:

$ x^2 = 0 $

$\sqrt[2]{x^2} = \sqrt[2]{0}$

$ x = 0 $

$V = \{0\}$

l) ${10x^2 – 15x = 0}$

Estamos novamente com uma equação incompleta, onde falta o termo independente da variável, isto é, onde $x^0$. Temos um fator comum entre os dois termos restantes que é $5x$. Colocamos em evidência o fator comum, ficando:

${5x}\cdot[{{10x^2 – 15x}\over{5x}}] = 0 $

${5x[2x – 3] = 0} $

Igualando os dois fatores a zero, temos:

${5x = 0}$

$ x = 0$

${2x – 3 = 0}$

${2x = 3}$

${{2x}\over{2}} = {{3}\over {2}}$

${ x = 3/2 }$

$ V = \{0, 3/2\}$

m) ${7x^2 – 28 = 0}$

Nesta equação o termo inexistente é o que contem a variável $x^1$. Vamos pelo método abreviado:

${7x^2 – 28 = 0}$

$ {{7x^2 – 28}\over 7} = 0$

$ x^2 – 4 = 0$

${ x^2 =  4}$

${\sqrt[2]{x^2} = \sqrt[2]{4}}$

${ x = \pm{2}}$

$ { V = \{- 2, +2\}}$

n) ${3x^2 – 27 = 0 }$

O mesmo caso do anterior.

${3x^2 – 27} = 0$

${{3x^2 – 27}\over 3} = 0$

${x^2 – 9 = 0}$

${x^2 = 9}$

${\sqrt[2]{x^2} = \sqrt[2]{9}}$

${ x = \pm 3}$

$ V = \{-3, +3\} $

o) $ {5x^2 + 25 = 0}$

Vamos ver como fica esse.

${5x^2  + 25 = 0}$

${{5x^2 + 25}\over 5} = 0$

$ {x^2 + 5 = 0} $

$ x^5 = -5 $

$ \sqrt[2]{x^2} = \sqrt[2]{-5} $

$ \sqrt[2]{-5} ∉ R $

Por isso

${V = \emptyset }$

Curitiba, 13 de maio de 2016.

Republicado em 27 de dezembro de 2017.

Décio Adams

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celulares: (41) 99805-0732

01.056 – Matemática, Álgebra, Equações 2º Grau, usando discriminante.

Exercitando do discriminante.

Determine o conjunto verdade das equações do segundo grau, determinando primeiramente o discriminante para verificar o tipo de raízes, para depois obter seus valores.

01).$\color{Indigo}{ x² – 5x + 6 = 0} $

Para começar, iremos identificar os coeficientes da equação.

$ {a = 1} $

${ b = -5 }$

$ {c= 6}$

Calculando o discriminante:

$ \Delta = {b² – 4ac} $

$ \Delta = {(-5)² – 4\cdot 1\cdot 6} $

$ \Delta = 25 – 24 $

$ \Delta = 1$

$ \Delta \gt 0 $

Isto significa que a equação tem duas raízes reais e diferentes entre si.  Podemos agora substituir na fórmula e calcular o restante.

$ x= {{-(-5)\pm\sqrt{\Delta}}\over 2\cdot 1} $

$ ={{5 \pm\sqrt{1}}\over 2} $

$ x= {{5 \pm 1}\over 2} $

As raízes serão:

$ x’= {{5 + 1}\over 2} = {{6}\over 2} =3 $

$ x”= {{ 5 – 1 }\over 2} = {{4}\over 2} = 2 $

O conjunto verdade é:

$$\color{Purple}{V = {\{2, 3\}}}$$

02). $\color{Indigo} {x² +3x -28 = 0} $

Os coeficientes da equação:

$ {a = 1}$

$ {b=3 }$

${ c = -28}$

Vamos calcular o discriminante:

$\Delta = b² – 4ac $

$\Delta = {3² – 4\cdot 1\cdot{(-28)}} $

$\Delta = {9 + 112} = 121$

$\Delta\gt 0 $

Também esta equação tem duas raízes reais e diferentes, pois o discriminante tem valor positivo. 

Vamos aplicar a fórmula:

$ x = {{-b\pm\sqrt{\Delta}}\over 2}$

$ x= {{- 3\pm\sqrt{121}}\over 2\cdot 1} $

$ x = {{-3 \pm 11}\over 2} $

As raízes da equação serão respectivamente:

$x’ = {{-3 + 11}\over 2} = {{8}\over 2} = 4 $

$ x” = {{-3 – 11}\over 2} = {{-14}\over 2} = -7 $

$$\color{Purple}{V= {\{-7, 4\}}}$$

03). $\color{Indigo}{ x² -6x + 9 = 0 }$$

Os coeficientes da equação são:

${a = 1} $ ${ b = -6}$ ${c = 9}$

Hora do discriminante:

$\Delta = b² – 4ac $

$\Delta= {(-6)² – 4\cdot 1\cdot 9} = {36 – 36} = 0$

$\Delta = 0$ 

Temos diante de nós uma equação do segundo grau com duas raízes reais e iguais. 

Aplicando a fórmula:

$ x = {{- b \pm\sqrt{\Delta}}\over 2a} $

$ x = {{-(-6)\pm\sqrt{0}}\over 2\cdot 1}$

As raízes serão:

$ x’ = x” = {{6}\over 2} = 3 $

$$\color{Purple}{V = {\{3\}}}$$

04). $\color{Indigo}{x² – 5x + 7 = 0}$

Coeficientes:

${a=1}$ ${b= -5}$

${c=7}$

Calculando o discriminante:

$\Delta = {b² – 4ac} $

$ \Delta = {(-5)² – 4\cdot 1\cdot 7} = 25 – 28 = -3$

$\Delta \lt 0$

Equação sem solução no conjunto dos números reais, pois o discriminante é negativo. 

$$\color{Purple}{V= {\emptyset}}$$

05). $\color{Indigo}{ x² + 7x + 15 = 0 }$

Coeficientes ${a = 1}$

${b = 7}$

${ c=15 }$

O discriminante fica:

$\Delta = {b² – 4ac} $

$\Delta = {7² – 4\cdot 1\cdot 15 } = {49 – 60} = -11$

$\Delta\lt 0$

Mais uma equação sem solução no conjunto dos números reais. O discriminante é negativo. 

$$\color{Purple}{V = {\emptyset}}$$

6. $\color{Indigo}{ x² + 8x + 16 = 0 }$

Os coeficientes são:

${ a= 1 }$ ${b=8}$ ${c = 16}$

Vamos ao discriminante:

$\Delta = {b² – 4ac} $

$\Delta = {8² – 4\cdot 1\cdot 16} = {64-64} = 0 $

$ \Delta = 0 $

Com o discriminante igual a zero, mais uma vez temos duas raizes reais e iguais. 

$x= {{-b\pm\sqrt{\Delta}}\over 2a} $

$ x= {{-8\pm\sqrt{0}}\over 2\cdot 1} $

$ x= {{-8}\over 2} = -4 $

$ x’ = x” = -4 $

$$\color{Purple}{V = {\{ -4\}}}$$

7. $\color{Indigo}{ x² -4x – 77 = 0 }$

Coeficientes:

${a=1 }$

${b=-4}$

${c=-77}$

Calculando o discriminante:

$\Delta = {b² – 4ac} $

$\Delta ={(-4)² – 4\cdot 1\cdot (-77)} = 16 +308 = 324 $ $\Delta \gt 0$ 

Com o discriminante positivo, temos duas raízes reais e diferentes. 

$ x = {{-b\pm\sqrt{\Delta}}\over 2a} $

$ x={{-(-4)\pm\sqrt{324}}\over 2\cdot 1} $

$x= {{ 4 \pm 18}\over 2} $

As raízes são:

$x’ = {{4 + 18}\over 2} = {{22}\over 2} = 11$

$ x” = {{4 – 18}\over  2 } = {{-14}\over 2} = -7 $

$$\color{Purple}{V = {\{-7, 11\}}}$$

Havendo dúvidas, consulte para esclarecimentos por um dos canais abaixo.

Curitiba, 11 de maio de 2016

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/decio.adams

www.facebook.com/livros.decioadams

www.facebook.com/decioadams.matfisonline

http://decioadamsold.netspa.com.br

Fone: (41) 3019-4760

Celula e WhatsApp: (41) 99805-0732

01.054 – Matemática, Álgebra, Equações incompletas do 2º Grau.

Incompletas?

Isso mesmo. Até o presente momento, vimos só as equações do segundo grau, ditas completas, isto é, contendo coeficientes numéricos diferentes de zero em todos os termos, na forma geral.

$$\color{NavyBlue}{ ax² + bx + c = 0 }$$

Mas há as equações do segundo grau que têm um dos coeficientes igual a zero (0), com exceção do a, pois nesse caso deixaria de ser do segundo grau, passando a ser uma equação do primeiro grau. Temos, pois, a possibilidade de uma equação com os coeficientes ou c iguais a zero (0). Elas ficam com a forma:

$$\color{Orchid} {ax² + c = 0}$$

$$\color{Orchid} {ax² + bx = 0} $$

$$\color{Orchid} {ax² = 0} $$

Continue lendo “01.054 – Matemática, Álgebra, Equações incompletas do 2º Grau.”

01.052 – Matemática, Álgebra, Equação do segundo grau: Discriminante.

Equação do segundo grau com e sem solução

Vamos lembrar da Fórmula de Bhaskara e analisar com atenção uma parte dela. Vamos deter nossos olhos na parte que está sob o sinal de raiz quadrada, precedido dos sinais $\pm$.

$$\color{Indigo}{ x = {{-b \pm\sqrt{b^2 – 4ac}}\over 2a}}$$

Nossa atenção deve ser especial sobre essa parte da fórmula, pois sabemos do estudo das raízes de números relativos que, as raízes de índice par só existem para os números positivos e que isso se deve ao fato de só existirem números reais positivos, resultantes de qualquer outro número real elevado a um expoente par.

Como consequência, se a expressão existente sob o radical tiver um valor negativo, não vai haver solução da equação no conjunto dos números reais. Essa expressão é denominada discriminante e costuma ser representada pela letra grega Δ. Assim, teremos:

$$\color{Orchid}{ \Delta = b^2 – 4ac}$$

Continue lendo “01.052 – Matemática, Álgebra, Equação do segundo grau: Discriminante.”