01.038 – Matemática – Álgebra. Redução de termos semelhantes

Redução de termos semelhantes.

O que significa esse título?

Imagine uma expressão algébrica com vários termos, sendo alguns deles semelhantes. Já sabemos, nesta altura dos acontecimentos, que sempre devemos buscar a expressão mais simples que for possível estabelecer, para facilitar qualquer solução que tenhamos em mente.

Devemos ter em mente que, em uma mesma expressão, não é aceitável que uma mesma letra (símbolo) represente mais de um valor. Por exemplo se $$\begin{align}\color{Sepia}{{x} = 5}\end{align}$$ em um termo de uma expressão algébrica, em todos os lugares em que aparecer a letra $\color{Red}{x}$, ela terá sempre o valor $\color{Red}{5}$. Então, as partes literais de vários termos algébricos semelhantes, terão o mesmo valor. O que distingue os termos entre si, são seus coeficientes. Isto indica quantas parcelas iguais serão somadas ou subtraídas entre si nesta expressão. Desta forma nos é possível substituir vários termos semelhantes por um único termo, cujo coeficiente seja a soma dos coeficientes numéricos daqueles.

Continue lendo “01.038 – Matemática – Álgebra. Redução de termos semelhantes”

01.037 – Matemática, Expressões algébricas, introdução

Expressões algébricas, exercícios.

Vamos resolver os exercícios propostos no post anterior e fazer outros, sobre os assuntos apresentados no mesmo.

  1. Escrever na forma simbólica as sentenças.

a) O triplo de um número somado com o quíntuplo de outro número.

$$\color{Sepia}{{3\cdot x} + {5\cdot y}}$$ ou $$\color{Sepia}{ 3x + 5y} $$

b) Um número adicionado ao dobro de outro.

$$\color{Sepia}{{ m } + {2\cdot n}}$$ ou $$\color{Sepia}{m + 2n}$$

c) O produto de dois números, adicionado ao produto de outros dois.

$$\color{Sepia}{{a\cdot b} + {m\cdot n}}$$ ou $$\color{Sepia}{ab + mn}$$

d) O quíntuplo da soma de dois números.

$$\color{Sepia}{5 \cdot{( u + v)}}$$ ou $$\color{Sepia}{5{(u + v)}}$$

e) A metade do produto de dois números.

$$\color{Sepia}{{i\cdot j}\over {2}} $$ ou $$\color{Sepia}{{1\over 2}{ij}}$$ ou $$\color{Sepia}{{ij}\over 2}$$

f) Um quinto do produto de três números.

$$\color{Sepia}{{x\cdot y\cdot z}\over {5}}$$ ou $$\color{Sepia}{{xyz}\over 5}$$

$$\color{Sepia}{{1\over 5}\cdot{x\cdot y \cdot z}}$$ $$\color{Sepia}{1\over5}{xyz}$$

g) A metade de um número, mais a terça parte de outro.

$$\color{Sepia}{{m\over 2} + {n\over 3}}$$ ou$$\color{Sepia}{{1\over2}\cdot x} + {{1\over 3}\cdot y}$$

h) A diferença entre o triplo de um número e o dobro de outro.

$$\color{Sepia}{{3\cdot a} – {2\cdot b}} $$ ou$$\color{Sepia}{3a – 2b}$$

2. Vamos classificar as expressões algébricas em função do número de seus termos.

a) $$\color{Red}{2ab}$$.

Observando vemos que estamos diante de um produto, sem nenhum sinal de adição ou subtração. É pois uma expressão de um único termo e iremos classificá-la como um monômio.

b) $$\color{Red}{3x + 5y – 2z}$$.

Facilmente vemos que há três termos, separados por sinais de adição (+) e (-). Portanto estamos diante de um polinômio que recebe a denominação específica de trinômio.

c) $$\color{Red}{xy + 3y^{2} + 4z – x}$$.

Este é um polinômio com quatro termos e não temos denominação específica para ele. É um polinômio de quatro termos.

d) $$\color{Red}{{xy}\over3}+{2x^{3}}$$.

Temos agora dois termos algébricos, separados por um sinal (+) e este recebe a denominação de binômio.

Não se deve esquecer que o que separa os termos de um polinômio são os sinais (+) e (-). Multiplicação e divisão, agrupam os números e letras formando um único termo.

3) Vamos separar as partes literais e os coeficientes numéricos dos termos algébricos.

a) $$\color{Red}{abc}$$

Qual é o coeficiente numérico?Não vamos esquecer. O coeficiente que não precisa ser escrito é aquele igual unidade e pode ser positivo ou negativo, dependendo do sinal que houver antes do termo. Se for o primeiro termo de uma expressão o sinal (+) é sempre subentendido. Neste caso o nosso coeficiente numérico é (+ 1) ou simplesmente 1.

A parte literal é o produto das letras $\color{Red}{abc}$.

b) $$\color{Red}{{5\over 3}\cdot xy^{5}}$$.

O coeficiente numérico é a fração $\color{Red}{\frac{5}{3}}$ e a parte literal é o produto:

$$\color{Red}{x\cdot y^{5}}$$

c) $$\color{Red}{{3mn}\over 7}$$.

O coeficiente numérico agora é também uma fração, cujo numerador é 3 e o denominador é 7. Portanto a resposta é $\color{Red}{\frac{3}{7}}$. A parte literal é o produto $\color{Red}{m\cdot n}$

d) $$\color{Red}{\sqrt{5}\cdot x^{3}\cdot y}$$.

Agora nosso coeficiente é

$$\color{Blue}{\sqrt 5}$$

e a parte literal o produto

$$\color{Blue}{x^{3}\cdot y}$$

e) $$\color{Red}{-{{ 6ij}\over 11}}$$.

Agora nosso coeficiente numérico é uma fração e seu sinal é (-), pois o sinal faz parte dele.

$$\color{Blue}{-{6\over 11}}$$

e a parte literal é o produto $\color{Blue}{i\cdot j}$

f) $$\color{Red}{-{3}^{2}\cdot x^{2}\cdot y^{3}}$$.

O coeficiente numérico será

$$\color{Blue}{- {3^{2}}} $$  ou $${-9}$$.

É importante notar que o sinal está diante da potência e não faz parte dela. Equivale a termos escrito

$$\color{Red}{-{(3)}^{2}\cdot x^{2}\cdot y^{3}}$$

A parte literal é $$\color{Red}{x^{2}\cdot y^{3}}$$

g) $$\color{Red}{(-3)^{2}\cdot x^{2}\cdot y^{3}}$$.

Agora o coeficiente numérico é

$$\color{Red} {(-3)^{2}}$$ ou $$\color{Red}{+9}$$ ou simplesmente $$\color{Red}{9}$$.

É muito fácil acontecer neste caso de se cometer o erro de sinal. No caso anterior o sinal (-) estava antes da base da potência, porém, não fazia parte dela. Agora temos a base da potência associada diretamente ao sinal (-). Esta é a diferença e pode ser fatal numa situação de resolução de algum problema, durante uma prova ou coisa assim.

A parte literal é a mesma do exercício anterior

$$\color{Blue}{{x^{2}}\cdot y^{3}}$$

Obs.: Esta dificuldade deixa de ser percebida quando o expoente da potência que compõe o coeficiente numérico for ímpar. Neste caso ela sempre terá o sinal da base. 

4. Vamos identificar termos semelhantes em expressões algébricas e agrupá-los.

a) $$\color{Sepia}{{xy^{2}} +{3\over 2}{x^{2}y} + {2xy} – 5{xy^{2}} – { {xy}\over 5}} $$

Não podemos esquecer. O que torna dois termos semelhantes, é a parte literal. Se houver uma única diferença, eles deixam de ser semelhantes. Assim iremos encontrar $$\color{Red}{({xy^2} – 5{xy^2}) + {({3\over2}{x^2}{y})}+{({2xy} -{{xy}\over 5})}} $$ Os termos semelhantes estão colocados entre parênteses. Temos cinco termos, sendo dois pares deles que são semelhantes entre si e um que é diferente de todos os outros.

b) $$\color{Sepia}{{5x} – 4{xy} + 3{x} – 2{y} + {y} – {xy} – {x}} $$ $$ {{(5x + 3x -x)}+{(-4xy – xy)} + {(-2y + y)}} $$

c) $$\color{Sepia}{a^2}{b^3} – {5\over 8}{a^2} + {4\over 3}{b^5} + 2{a^2}{b^3} – {b^5} + 2{a^2}$$

$$\color{Sepia}{{({a^2}{b^3} + 2{a^2}{b^3})} +{(-{5\over 8}{a^2} +2{a^2})} + {({4\over 3}{b^5} – {b^5})}} $$

05. Identificar o coeficiente numérico dos termos algébricos abaixo.

5.1. $\frac{3}{7}\times ax^{2}$$\Rightarrow$$\color{Red}{\frac{3}{7}}$

5.2.$\sqrt{12}\cdot mn$$\Rightarrow$$\color{Red}{\sqrt{12} = 2\sqrt{3}}$

5.3.$5^{2}\times xy^{3}$$\Rightarrow$$\color{Red}{25}$

5.4.$\sqrt\frac{rs}{5}$$\Rightarrow$$\color{Red}{\sqrt{\frac{1}{5}}}$

5.5. $\frac{ay^{5}}{7}$$\Rightarrow$$\color{Red}{{1}{7}}$

5.6. $2\cdot\frac{bx^{5}}{2z}$$\Rightarrow$$\color{Red}{{2}{2} = 1}$

5.7. $\sqrt[3]{27}\times nu^{7}$$\Rightarrow$$\color{Red}{\sqrt[3]{27} = 3}$

5.8. $\frac{ac^{2}y}{15z}$$\Rightarrow$$\color{Red}{{1}{15}}$

5.9. $ [(3^{2}]^{3}\times a^{3}y^{5}$$\Rightarrow$$\color{Red}{9^{3} = 729}$

5.10. $2(\frac{3}{5})\times m^{3}x^{2}$$\Rightarrow$$\color{Red}{{13}{5}}$

06. Identifique a parte literal dos monômios que abaixo.

6.1.  $2\times \frac{ax}{3y}$$\Rightarrow$$\color{Red}{\frac{ax}{y}}$

6.2. $7\cdot\sqrt{x^{3}y^{2}}$$\Rightarrow$$\color{Red}{x^{3}y^{2}}$

6.3. $\sqrt[5]{7}\cdot{cd^{5}}$$\Rightarrow$$\color{Red}{c\cdot d^{5}}$

6.4. $9\cdot{rsu^{3}}$$\Rightarrow$$\color{Red}{rsu^{3}}$

6.5. $\frac{4}{5}\cdot{a^{2}x^{3}}$$\Rightarrow$$\color{Red}{a^{2}\cdot x^{3}}$

Havendo dúvidas, contate por um dos canais abaixo. Estou sempre pronto a ajudar quem estiver com dificuldades para entender alguma coisa.

Obs.: Não irão aparecer na prática expressões onde haja somente dois termos semelhantes. Esse número é indeterminado. Agrupamos tantos quantos tiverem a parte literal igual. 

Curitiba, 28 de março de 2016. Republicado em 04 de dezembro de 2017.

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732

01.036 – Matemática – Álgebra, introdução e conceitos básicos.

Iniciação à álgebra.

A origem da palavra “álgebra”, é um tanto dúbia. Supõe-se que tenha surgido a partir de um livro de um matemático árabe, escrito no ano 825 d.C. No título desse livro há a palavra “al-jabr” e o assunto é exatamente o estudo do que hoje denominamos com esse nome.

Traduzindo para uma linguagem comum e direta, consiste na substituição de números (algarismos) por letras ou outros símbolos. O uso das letras universalizou-se, uma vez que isso dispensa a criação de uma nova coleção de símbolos para representar números de qualquer valor. Usamos tanto o alfabeto latino, como o grego, além de alguns símbolos criados especialmente para indicar operações matemáticas. Poderia alguém perguntar:

  • Qual a utilidade de substituir números por letras?
  • À primeira vista, parece não oferecer nenhuma vantagem. Quando porém ingressamos nas aplicações mais complexas da matemática, para solucionar problemas, percebemos a utilidade desse procedimento. Há sempre um valor a ser determinado, que denominamos incógnita e aí começa o uso de letras para representar esses números desconhecidos em determinada situação.

Continue lendo “01.036 – Matemática – Álgebra, introdução e conceitos básicos.”

01.034 – Matemática, Exercícios resolvidos

Lista de exercícios

Resolvidos e comentados.

Uma pessoa, encontrou meus artigos sobre matemática (quatro operações, propriedades, potenciação e radiciação), que publiquei há um ano passado aproximadamente. Ali encontrou meus contatos e telefonou, para pedir ajuda. Trata-se de uma lista de exercícios sobre o assunto. Tentou me explicar por telefone e eu tentei lhe resolver, pela forma como entendi. Graças a Deus, eu tive a ideia de pedir que ele fizesse uma cópia (scanner) e me mandasse por e-mail, pois eu havia entendido erradamente e a resposta estaria errada. São ao todo 13 exercícios, alguns bastante simples de solucionar, outros exigem mais raciocínio, com aplicação de recursos aritméticos e algébricos.

Continue lendo “01.034 – Matemática, Exercícios resolvidos”

01.033 – Matemática – Aritimética, razão, proporção. Regra de três simples

Aplicação das proporções – Regra de três simples.

  • Uma das principais aplicações das proporções é a conhecida Regra de Três. Cabe talvez a pergunta, por que o nome Regra de Três? 

Na verdade, o nome se deve ao fato de serem fornecidos três valores e existir um quarto valor desconhecido. São valores de duas grandezas que se correspondem. A existência de proporção entre esses valores, permite que seja determinado o quarto valor, através do conhecimento dos outros três.

Vamos ver um exemplo.

Continue lendo “01.033 – Matemática – Aritimética, razão, proporção. Regra de três simples”

01.032 – Matemática, Aritimética. Fração, razão, proporção e suas propridades II

Proporções e suas propriedades.

  • No post anterior sobre o assunto, chegamos a ver três propriedades das proporções. Vamos lembrar:
  •  O produto dos extremos é igual ao produto dos meios. 
  • Alternando os extremos entre si, a proporção continua existindo.
  •  Alternando os meios entre si, a proporção continua existindo. 

OBS.: Se aplicarmos as propriedades dois e três ao mesmo tempo, equivale a aplicar uma quarta propriedade.

  •  Invertendo as posições dos antecedentes com seus consequentes, continuamos a ter uma proporção.
  • Vejamos o exemplo.
    • $\mathbf{\color{Navy}{{2\over 3} = {6\over 9}}}$
  • Se invertermos teremos.
    • $\mathbf{\color{Navy}{{3\over 2} = {9\over 6}}}$

Tanto na primeira como na segunda proporção teremos:

  • $\mathbf{\color{Navy}{{2\cdot 9} = {3\cdot 6}}}$
  • $\mathbf{\color{Navy}{{3\cdot 6}={9\cdot 2}}}$
  • Ambas as  multiplicações resultam em igualdades e dão o mesmo valor.

Continue lendo “01.032 – Matemática, Aritimética. Fração, razão, proporção e suas propridades II”

01.031 – Matemática – Aritmética, fração, razão, proporção

Razão. 

  • Normalmente essa palavra se refere a habilidade humana de raciocinar, pensar, elaborar teorias e conceitos. Aqui, na matemática, ela tem um significado ligeiramente diferente. Denominamos razão à divisão indicada entre dois números. Facilmente ela é confundida com uma fração, o que aliás não chega a ser nada muito grave, contanto que saibamos algumas regras aplicáveis às razões. Vamos começar com um exemplo. O fato de poder ser representada da mesma forma como as frações, não atrapalha o desenvolvimento do assunto.
  • $$\bbox[4px, border:2px solid Olive]{\mathbf{\color{Sepia} {5\div 8}}}$$
  • $$\bbox[4px, border:2px solid Olive]{\mathbf{\color{Sepia} {5\over 8}}}$$
  • $$\bbox[4px, border:2px solid Olive]{\mathbf{\color{Sepia} {5/8}}}$$

Continue lendo “01.031 – Matemática – Aritmética, fração, razão, proporção”

01.030 – Matemática – Aritmética, fração, razão, proporção, números decimais, dízimas periódicas (conversão)

Transformar dízimas periódicas em frações.

  • O que estou propondo é encontrar a fração que recebe o nome de geratriz da dízima periódica. Vamos começar com as dízimas denominadas simples, isto é, sem algarismos não repetidos. A parte periódica começa logo depois da vírgula. Vamos começar com um exemplo bem simples.
    • $\color{Brown}{0,33…= ?}$
    • $\mathbf{\color{Navy}{0,33 = {3\over 9}}}$
  • Temos uma fração cujos termos numerador e denominador tem divisor comum $\color{Navy}{3}$. Pode portanto ser simplificada para a forma irredutível, dividindo ambos os termos por$3$. Assim:
    • $\mathbf{\color{Navy}{{3\over 9 }  = {{3 \div 3}\over {9\div 3}} = {1\over 3}}}$
  • A geratriz é uma fração que tem como numerador o período (algarismos repetidos) e como denominador tantos algarismos 9, quantos forem os algarismos do período. No exemplo acima, havia apenas um algarismo no período, portanto, também usamos apenas um algarismo 9 no denominador. Se quiser tirar a prova basta dividir o numerador (1) pelo denominador (3) e encontrará a dízima periódica
  • Vejamos mais exemplos.
    • $\mathbf{\color{Navy}{0,5757…=?}}$ $\rightarrow$ $\mathbf{\color{Navy}{0,57 = {{57}\over {99}}}}$
  • A fração geratriz novamente apresenta os termos com o divisor comum $\color{Navy}{3}$ e podemos determinar a sua forma irredutível.
    • $\mathbf{\color{Navy}{{{57}\over {99}} = {{57 \div 3}\over {99 \div3}} = {{19}\over{33}}}}$
  • $\mathbf{\color{Navy}{0,437… = ?}}$
    • $\mathbf{\color{Navy}{0,437… = {{437}\over {999}}}}$
  • Não há como simplificar, pois não existe divisor comum entre os termos da fração geratriz além da unidade. Por isso ela permanece assim. Já está na forma irredutível.

Continue lendo “01.030 – Matemática – Aritmética, fração, razão, proporção, números decimais, dízimas periódicas (conversão)”

01.029 – Matemática – Aritimética, Fração, Razão, Proporção, Números (frações) decimais.

Frações decimais.

  • Pode parecer no primeiro momento que todas as frações são decimais ou números decimais, pois o resultado da divisão do numerador pelo denominador, via de regra, resulta em uma parte inteira, seguida da vírgula e uma ou mais casas decimais. Para não deixar dúvidas, vejamos os exemplos.
  • $\color{Navy}{{3 \div 5}  = 0,6}$
  • $\color{Navy}{{4 \div 7 }  = 0,571428571428…}$
  • $\color{Navy}{{10 \div 8} = 1,25 }$
  • $\color{Navy}{{10 \div 7} = 1,428571428571…}$
  • Podemos notar que existem frações onde a divisão termina exata, isto é, o resto é zero. Há outras em que o resto nunca dá zero e os algarismos decimais se repetem em uma mesma sequência. É o caso dos exemplos 2 e 4. Aquelas frações em que a divisão dá exata, isto é resulta um número decimal exato, sem sobrar resto, são as frações decimais ou números decimais exatos.
  • As frações que resultam em divisão não exata com repetição de algarismos, sobrando sempre um resto diferente de zero, são frações e o resultado da divisão recebe o nome de dízima periódica.  Esse nome vem do fato da repetição periódica dos algarismos resultantes no quociente. Teremos nesse caso sempre que optar por um valor arredondado, ou seja, aproximado, pois o número exato só é representado pela fração.

Continue lendo “01.029 – Matemática – Aritimética, Fração, Razão, Proporção, Números (frações) decimais.”

01.028 – Matemática – Aritimética. Frações, razão, proporção, operações com frações -Divisão.

Vamos dividir frações?

  • Ao estudar as quatro operações da aritmética, vimos que a divisão é a operação inversa da multiplicação. De onde poderíamos deduzir que, para dividir duas frações, basta dividir os numeradores entre si e os denominadores entre si. De fato, isso funciona, porém apresenta alguns problemas na hora de resolver. Mas existe uma maneira alternativa que é fácil de resolver e não apresenta dificuldades. Vamos ver um exemplo.
  • \[\bbox[4px,border:2px solid Olive]{\mathbf{\color{Navy}{{\frac{6}{10}}\div{\frac{2}{5}}}}}\]
  • Fica assim:
  • \[\mathbf{\color{Navy}{\frac{(6 / 2)}{(10 / 5)}  = \frac{3}{2}}}\]

Escolhi essas frações por que nelas não aparece nenhum problema para fazer a divisão entre numeradores e denominadores. Assim, fica mais fácil explicar o modo alternativo que iremos utilizar na continuação. O segredo é transformar a divisão em uma multiplicação e, para isso, basta inverter os termos da fração divisor. Assim:

  • \[\mathbf{\color{Navy}{\frac{\frac{6}{10}}{\frac{2}{5}} = \frac{6}{10}\times\frac{5}{2}}}\]

Cancelando os fatores comuns entre numeradores e denominadores temos:

  • \[\mathbf{\color{Navy}{\frac{2\times 3}{2\times 5}\times{\frac{5}{2}}= \frac{3}{2}}}\]
  • Vemos que o resultado é o mesmo e podemos portanto converter toda divisão de frações em multiplicação. Basta inverter a posição do numerador e denominador da fração divisor.

Vejamos outro exemplo:

  • \[\mathbf{\color{Navy}{{\frac{3}{5}}\div{\frac{4}{7}} = \frac{3\cdot 7}{5\times 4}  = \frac{21}{20}}}\]
  • Não há fatores comuns, mas a fração resultante é imprópria, podendo ser transformada em número misto.
  • \[\mathbf{\color{Navy}{\frac{21}{20} = 1\frac{1}{20}}}\]

Continue lendo “01.028 – Matemática – Aritimética. Frações, razão, proporção, operações com frações -Divisão.”