01.008 – Matemática – aritmética. As quatro operações – adição.

250px-Aritmetica_calandri_handschrift.02
Figura da Idade Média, relativa a aritmética.

Aritmética.

Essa palavra designa a parte da Matemática que nos apresenta ao mundo dos números. Começamos por aprender a contar, associar um símbolo aos números que correspondem às quantidades de objetos que contamos. Esses símbolos denominamos algarismos, e os mais usados no mundo hoje em dia são os hindu arábicos. Essa denominação é devida ao fato de sua origem ter ocorrido na India e depois foram aperfeiçoados na Arábia. Depois de dominarmos a escrita e leitura dos números, fazendo o uso adequado da posição dos algarismos, começamos a aprender as quatro operações:

  • Adição

Consiste na reunião dos elementos de dois ou mais conjuntos. A quantidade de elementos resultante é denominada soma. A soma será o número de elementos do novo conjunto formado pela reunião dos primeiros. Por exemplo. Seja o conjunto $\color{Navy}{A =\varnothing}$ e $\color{Navy}{B = \{ O\}}$. O primeiro conjunto é vazio, isto é não tem nenhum elemento. Então o número de elementos é $\color{Navy}{n(A) = 0}$. O segundo conjunto tem apenas uma letra “O“. Portanto $\color{Navy}{n(B) = 1}$. Vamos representar isso num desenho.

Rendered by QuickLaTeX.com

  • Vamos reunir os elementos dos dois conjuntos em um único conjunto e contar a quantidade de elementos resultante.

Rendered by QuickLaTeX.com

  • Notamos que da reunião dos dois conjuntos resultou um novo conjunto com um único elemento. Isto nos permite afirmar que a adição dos números 0 (zero) com o número 1(um), resulta na soma 1 (um). Ou seja adicionar 0 (zero) com qualquer número não altera o resultado.
    • $\color{Navy}{0 + 1 = 1}$
  • Vejamos agora dois conjuntos, tendo o primeiro 1(um) elemento e o outro 2(dois) elementos. Façamos a reunião dos mesmos e vejamos quantos elementos resultam.

Rendered by QuickLaTeX.com

Rendered by QuickLaTeX.com

  • Notamos que o conjunto que reúne os dois conjuntos é um conjunto com um total de 3(três) elementos. Portanto:
  • $\color{Navy}{ 1 + 2 = 3 }$
  • Este procedimento de juntar os elementos de dois ou mais conjuntos você pode fazer usando os dedos de suas mãos. Vejamos mais um exemplo. Um conjunto M com três elementos e um conjunto N com quatro elementos.

Rendered by QuickLaTeX.com

Vemos na figura dois conjuntos com o mesmo tipo de elementos. O conjunto M formado por três elipses e o conjunto N por 4 elipses. Podemos reunir todos em um único conjunto e ver quantos serão os elementos do do novo conjunto formado pela reunião dos dois.

Rendered by QuickLaTeX.com

Se contarmos o número de elementos existentes no novo conjunto encontraremos como resultado o número 7. Isto nos permite afirmar que a adição dos números que representam a quantidade de elementos dos dois conjuntos que foram reunidos, tem como resultado 7 (sete). Simbolicamente fica:

  • $\color{Navy}{ 3 + 4 = 7} $
  • Se você quiser fazer a adição de 5 ovos com 7 ovos, usando os dedos das mãos, como irá proceder?
    • Em condições normais, você terá em sua mão esquerda 5 dedos, que podem representar os 5 ovos. Na outra mão terá também 5 dedos, que poderão representar outros 5 ovos. Se você continuar contando, depois do cinco vem o seis e logo o sete. Portanto faltarão dois dedos. Conte os dedos da mão esquerda, os da mão direita, chegando a 10, e volte a contar mais dois da mão esquerda. Deverá obter o número 12. Ou seja:
    • $\color{Navy}{ 5 + 7 = 5 + 5 + 2 = 12 }$
    • 6 uvas + 3 maçãs = 9 frutas, mas não serão 9 uvas, nem 9 maçãs. Em geral não adicionamos coisas diferentes.
  • Os números que somamos são chamados parcelas. O número de parcelas de uma adição, não tem limites e nem importa a ordem em que as adicionamos, contanto que façamos o processo de maneira correta.
Addition_Table.svg
Tabela de dupla entrada. Os números na primeira linha e coluna, tem suas somas no cruzamento das respectivas linhas e colunas.
  • A tabela apresentada acima, pode ser útil para obter a soma da adição de números entre 0(zero) e 9 (nove). Pode substituir os dedos ou outros objetos no momento de realizar a adição de números.
  • Adição de números maiores.

  • Sejam, por exemplo as parcelas $\color{Navy}{ 149 + 214 = ?}$
  •      Eles serão escritos um sobre o outro, formando a coluna das unidades, a coluna das dezenas, centenas, milhares e assim até o final. Começamos a efetuar pelas unidades e assim sucessivamente, até completar a adição. O número formado será a soma das parcelas.
Adição de números com vários algarismos20160710_12151978
Adição de números com vários algarismos em colunas 1
  • Na figura ao lado, vemos efetuada a adição dos dois números dados. Observe que adicionamos a partir das unidades. No caso $\color{Navy}{ 9 + 7 = 16}$. Escrevemos as unidades 6 (seis) abaixo da linha horizontal e a dezena, colocamos acima do 4 (quatro), na coluna das dezenas. Repetimos o processo e obtemos $\color{Navy}{1 + 4 + 1=6}$ (seis) dezenas. Não temos nenhuma centena. Adicionamos a coluna das centenas e resulta a soma $\color{Navy}{366}$.
  • Ao lado temos a adição $\color{Navy}{164 + 98 = ?}$. Na formação das colunas, a casa das centenas ficou vaga para o segundo número, uma vez que temos um número sem nenhuma centena. $\color{Navy}{4 + 8 = 12}$, nos dá duas unidades e uma dezena. Escrevemos as duas unidades abaixo da linha horizontal e a dezena colocamos acima dos algarismos das dezenas. Somamos $\color{Navy}{ 1 + 6 + 9 = 16}$ que nos dá seis dezenas de unidades e uma centena. O seis vai ao lado do dois, na casa das dezenas e a centena, acima dos algarismos das centenas. Somamos $\color{Navy}{1 + 1 = 2}$, resultam duas centenas e a soma dos números é igual a $\color{Navy}{262}$.
  • Tomemos mais dois exemplos.
    • $\color{Navy}{1537 + 7259 = ? }$
    • $\color{Navy}{2836 + 475 =?}$
Adição de números com vários algarismos 220160710_12385712
Adição de números com vários algarismos 2
  • Note que devemos colocar os algarismos na posição correta e sempre efetuar a adição da direita (unidades) para esquerda, seguindo a ordem das dezenas, centenas e demais classes. A adição de $\color{Navy}{7 + 9 = 16}$. Seis unidades e uma dezena que irá ser adicionada na segunda coluna. Assim $\color{Navy}{1 + 3 + 5 = 9}$. Escrevemos as nove dezenas na segunda coluna, ao lado esquerdo das seis unidades da primeira coluna. Adicionamos $\color{Navy}{5 + 2 = 7}$ e depois $\color{Navy}{1 + 7 = 8}$. O resultado (soma) será o número ${8796}$. Procedemos da mesma maneira com os outros dois números.
  • Vamos exercitar.

    • Efetue as adições dos números, utilizando os dedos, outros objetos e mesmo a tabela apresentada acima.
      • $\color{Blue}{9 + 12 = ?}$
      • $\color{Blue}{15 + 8 = ?}$
      • $\color{Blue}{16 + 9 = ?}$
      • $\color{Blue}{21 + 5 = ?}$
      • $\color{Blue}{33 + 4 = ?}$
      • $\color{Blue}{27 + 3 = ?}$
      • $\color{Blue}{35 + 8 =  ?}$
    • Efetue as adições dos números, escrevendo em colunas, como mostrado acima e efetue da direita para esquerda.
      • $\color{Brown}{78 + 63 = ?}$
      • $\color{Brown}{93 + 142 = ?}$
      • $\color{Brown}{87 + 231 + 158 = ?}$
      • $\color{Brown}{527 + 1872 = ?}$
      • $\color{Brown}{2056 + 1932 = ?}$
      • $\color{Brown}{5743 + 3278 + 7094 = ?}$

Curitiba, 10 de julho de 2017 (Post refeito e ampliado nesta data).

Republicado em 25 de outubro de 2017.

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com\decioadams.matfisonline

Celular e WhatsApp: (41) 9805-0732

01.004 – Matemática – aritimética – Adição na forma de colunas.

Adição de números com vários algarismos. 

  • Como já vimos anteriormente, os algarismos do sistema decimal de numeração, são formados usando dez símbolos. Todos os demais números são escritos com estes símbolos, que passam a ter valores diferentes dependendo da ordem e classe em que estão colocados. Para resolver a adição de números com vários algarismos, de forma manual, começamos por escrever seus algarismos, formando colunas de modo que as ordens e classes fiquem na mesma coluna. Assim:
  • $$\color{Sepia}{48 + 31 =?}$$

Note que o  8 e o 1 estão ambos na coluna das unidades simples. ( 8 + 1 = 9) adicionamos os dois algarismos e colocamos abaixo de uma linha horizontal traçada sob as colunas. O número 4 + 3 = 7 e também colocamos abaixo da coluna das dezenas de unidades. Dessa forma, resultou que a soma de $$\color{NavyBlue}{48 + 31 = 79}$$.

São sete dezenas e nove unidades.

Continue lendo “01.004 – Matemática – aritimética – Adição na forma de colunas.”

01.003 – Treinando a adição de números.

Treino de adição

Como vimos no post anterior, para adicionar números de poucas unidades, fica simples efetuar pela contagem dos elementos. Com a prática adquirida, pode-se depois partir para adição de números com valores mais elevados.

Vejamos um exemplo:

  • 4 +  7 = …….

${\underbrace{♥, ♥, ♥, ♥} +\underbrace {♥, ♥, ♥, ♥, ♥, ♥, ♥}}$ = ${\underbrace{♥, ♥, ♥, ♥, ♥, ♥, ♥, ♥, ♥, ♥, ♥}}$

Um conjunto com quatro unidades e outro com sete unidades. Reunidos, formam um conjunto com onze unidades, o que permite escrever que:

4 + 7 = 11

Continue lendo “01.003 – Treinando a adição de números.”