01.042 – Matemática – Álgebra, multiplicação de polinômios (exercícios resolvidos)

Exercitar é o caminho da aprendizagem.

Vamos começar por resolver os exercícios que ficaram no último post, sobre esse assunto.

  1. Efetuar a multiplicação dos termos algébricos a seguir.

a) $\color{Sepia}{({7\over 5}{bx})}{({5\over 3}{cx^2})}$

Vamos agrupar os coeficientes e as partes literais, para facilitar a operação.

$({7\over 5})\cdot({5\over3})\cdot {(bx)}\cdot {(cx^2)}$

Entre as frações coeficientes, temos fatores comuns entre numerador e denominador, o que permite simplificar. As partes literais, tem os expoentes da mesma letra somados na multiplicação.

${7\over \not{5}}\cdot{\not{5}\over 3}{bcx^{(1 +2)}} $

$$\color{NavyBlue}{{7\over 3}{bcx^3}}$$

b) $\color{Sepia}{{(2ay)}{(5ay)}}$

Agrupando os fatores

${2\cdot 5}\cdot{a\cdot a}\cdot{y\cdot y}$

$ {10\cdot {a^{(1 + 1)}}\cdot {y^{(1+1)}}}$

$$\color{NavyBlue}{10a^2y^2}$$

c) $\color{Sepia}{{(6 pr)}{({2\over3}{qr})}}$

Obs.: Qualquer número inteiro pode ser escrito na forma de uma fração, com o número por numerador e denominador igual a unidade. É o que iremos fazer neste exercício, para entender melhor a multiplicação dos coeficientes numéricos. Com a prática isso se torna dispensável.

$({6\over 1})\cdot({2\over 3})\cdot{(pr)}\cdot{(qr)}$

O numerador da primeira fração é divisível pelo denominador da segunda. Vamos simplificar, eliminando o denominador.

$({\not{6}\over 1})\cdot({2\over \not{3}}\cdot pr\cdot qr$

$ {(2\cdot 2)}\cdot pq\cdot r^{(1 + 1)}$

$$\color{NavyBlue} {4pqr^2}$$

d) $\color{Sepia}{{(3 i)}{(5ij)}}$

${3\cdot 5}\cdot{i\cdot i}\cdot {j}$

${15\cdot{i^{(1 + 1)}}\cdot {j}}$

$$\color{NavyBlue}{15i^2j}$$

e) $\color{Sepia}{{(4mn)}{(3n^3)}}$

${(4\cdot 3)}\cdot m\cdot{n^{(1+3)}}$

$$\color{NavyBlue}{12mn^4}$$

f) $\color{Sepia}{{(ax^2y)}{(bxy^3)}}$

${a\cdot b\cdot x^{(2 +1)}\cdot y^{(1 + 3)}}$

$$\color{NavyBlue}{abx^3y^4}$$

g)$\color{Sepia}{{(bx^3)}{(2cxy^2)}{(5bc^2)}}$

${b^{(1+1)}c^{(1+2)}x^{(3+1)}y^2}$

$$\color{NavyBlue}{b^2c^3x^4y^2}$$

h)$\color{Sepia}{{(3mn^2)}{(2m^3n)}{(-mn)}}$

${3\cdot 2\cdot (-1)\cdot m^{(1 + 3 + 1)}\cdot n^{(2 + 1 + 1)}}$

$\color{NavyBlue}{ -6m^5n^4}$$

2. Efetuar a multiplicação dos termos algébricos pelos polinômios a seguir.

a) $\color{BrickRed}{{(3ab)}\cdot {(2a + 3b – 5c)}}$

${(3ab)}\cdot{(2a)} +{(3ab)}\cdot{(3b)} + {(3ab)}\cdot{(-5c)}$

${(3\cdot 2)\cdot a^{(1 + 1)}\cdot b} +{3\cdot 3\cdot ab^{(1+1)}} + {3\cdot{(-5)}\cdot abc}$

$$\color{NavyBlue} {6a^2b + 9ab^2 – 15abc}$$

b) $\color{BrickRed}{{(mx^2)}\cdot {(mx + n{x^2}y + mxy)}}$

${(mx^2)}\cdot{(mx)} +{(mx^2)}\cdot{(nx^{2} y)} + {(mx^2)}\cdot{(mxy)}$

${m^{(1 + 1)}{x^{(2 +1)}} +{mnx^{(2+2)} y} + {m^{(1+1)}x^{(2+1)}} y}$

$$\color{NavyBlue}{m^2x^3 + mnx^{4}y +m^{2}x^{3}y}$$

c) $\color{Sepia}{{(5u^2v)}{(2uv + 4u – 5v + u^2v^3)}}$

$ 5u^2v\cdot 2uv + 5u^2v\cdot 4u + 5u^2v\cdot{(-5v)} +5u^2v\cdot u^2v^3 $

$5\cdot 2\cdot u^2v\cdot uv +5\cdot 4\cdot u^2v\cdot u + 5\cdot{(-5)}u^2v\cdot v + 5\cdot u^2v\cdot u^2 v^3 $

$$\color{NavyBlue}{10u^3 v^2 + 20u^3v -25u^2v^2 + 5u^4v^4}$$

d) $\color{Sepia}{({2\over 3}{axy^3}){(6xy – 3ay^2 + 9a{x^2}y)}}$

$({2\over 3}{axy^3})\cdot{(6xy)} + ({2\over3}{axy^3})\cdot {(-3ay^2)} + ({2\over 3}{axy^3})\cdot{(9ax^{2}y)}$

${2\over 3}\cdot{6}\cdot{(axy^3)}\cdot{xy} + {2\over 3}\cdot {(-3)}\cdot {axy^3} \cdot{ay^2} + {2\over 3}\cdot 9\cdot{axy^3}\cdot{ax^{2}y} $

${4ax^{(1+1)}y^{(3+1)}} -2a^{(1+1)}xy^{(3+2)} + 6a^{(1 + 1)}x^{(1+2)}y^{(3 + 1)}$

$$\color{NavyBlue}{ 4ax^{2}y^{4} – 2a^{2}xy^{5} + 6a^{2}x^{3}y^{4}}$$

e)$\color{Sepia}{{(3px^2)}{(5px + 3pq – 4qx^3)}}$

${(3px^2)}{(5px)} + {(3px^2)}{(3pq)} + {(3px^2)}{(-4qx^3)}$

${(3\cdot 5\cdot p^{(1 + 1)}\cdot x^{(2 + 1)}} + {3\cdot 3\cdot p^{(1 + 1)}\cdot q \cdot x^2} + {3\cdot {(-4)}\cdot p\cdot q\cdot x^{(2 + 3)}}$

$$\color{NavyBlue}{{15p^2x^3 + 9p^2qx^2 – 12pqx^5}}$$

f)$\color{Sepia}{{(2mn^2 + 5mx – 3nx^3)}{(2mn)}}$

${(2mn^2\cdot 2mn)} + {(5mx\cdot 2mn)} + {(-3nx\cdot 2mn)}$

$$\color{NavyBlue}{{4m^2n^3 + 10m^2nx – 6mn^2x}}$$

g)$\color{Sepia}{{(3xz^3)}{(2xy – 4xy^3z + 6x – x^2yz)}}$

${(3xz^3)\cdot (2xy)} + {(3xz^3)\cdot(-4xy^3z)} + {(3xz^3)\cdot (6x)} + {(3xz^3) \cdot(-x^2yz)}$

$$\color{NavyBlue}{{6x^2yz^3 – 12x^2y^3z^2 + 18x^2z^3 – 3x^3yz^4}}$$

h)$\color{Sepia}{{Ax^2)}{(Ax^3 + Bxy – Cyz^2)}}$

${(Ax^2)\cdot(Ax^3)} + {(Ax^2)\cdot(Bxy)} + {(Ax^2)\cdot(-Cyz^2)}$

${A^2 x^{(2 + 3)} + ABx^{(2 + 1)}y – AC x^2yz^2}$

$$\color{NavyBlue}{{A^2 x^5 + ABx^3y – ACx^2yz^2}}$$

3. Efetuar a multiplicação dos polinômios propostos a seguir.

a)$\color{Indigo}{{( a + ab)}{(abx + x)}}$

Agora chegou a hora de multiplicar todos os termos do primeiro polinômio, por todos os do segundo. No final reduzir os termos semelhantes, se os houver. Assim:

${a}\cdot {abx} + {a}\cdot{x} + {ab}\cdot {abx} + {ab}\cdot {x} $

${a^{(1+1)}bx + ax + a^{(1+1)}b^{(1+1)}x + abx }$

$$\color{Purple}{{ a^{2}bx + ax  + a^{2}b^{2}x + abx }}$$

b)$\color{Indigo}{{(pm – {p^2}n)}{(m^2 – pm^2 – pn)}}$

$ {pm}\cdot (m^2) + {pm}\cdot {(-pm^2)} + {pm}\cdot {-pn} + {(- p^2)}n\cdot {(m^2)} + {(-p^2)}n\cdot {(-pm^2)} + {(-p^2)}n\cdot{(-pn)} $

$ {pm^{(1 + 2)} – p^{(1 + 1)}m^{(1 +2)} – p^{(1 + 1)}mn – p^{2 }m^{2}n + p{(2+1)}m^{2}n + p^{(2+1)}n^{(1+1)}} $

$$\color{Purple}{pm^3 – p^2m^3 – p^2mn – p^2m^2n + p^3m^2n + p^3n^2}$$

Não há termos semelhantes, portanto a expressão final fica assim mesmo.

c)$\color{Indigo}{{(2x – 3 y)}{(5 + 2xy – 4 x^2 + 3xy^3)}}$

${2x}\cdot 5 + 2x\cdot {2xy} + 2x\cdot {(-4x^2)} + 2x\cdot {(3xy^3} + {(-3y)}\cdot 5 + {(-3y)}\cdot {(2xy)} +{(-3y)}\cdot {(3xy^3)} +{(-3y)}\cdot {(-4x^2)} $

$ 10x + 4x^{2}y – 8x^{(1+2)} +6x^{(1+1)}y^3 -15 y -6xy^{(1 +1)} – 9 xy^{(1 + 3)} +12x^{2}y $

$$\color{Purple}{{10x + 4x^{2} y – 8x^3 + 6x^{2}y^3 – 15 y – 6xy^2 – 9xy^4 + 12 x^{2}y}}$$

Não há termos semelhantes e o resultado fica assim mesmo.

d) $\color{Indigo}{{(3u + 5v)}{(6u^2 – 2 v + 7uv)}}$

$3u\cdot{(6u^2)} + 3u\cdot {(-2v)} + 3u\cdot{(7uv)} + 5v\cdot{(6u^{2})} + 5v\cdot{(- 2v)} + 5v\cdot{(7uv)} $

$$\color{Indigo}{18u^3 – 6uv + 21 u^{2}v + 30u^2v – 10v^2 + 35uv^{2}}$$

e)$\color{Indigo}{{(4m – 2n)}{(mn + m^2n – 3n^3)}}$

${(4m)\cdot(mn) + (4m)\cdot(m^2n) + (4m)\cdot(-3n^3) + (-2n)\cdot (mn) + (-2n)\cdot (m^2n) + (-2n)\cdot(-3n^3)}$

$\color{Purple}{{4m^2n + 4m^3n – 12mn^3 – 2mn^2 – 2m^2n^2 + 6n^4}}$$

Sem termos semelhantes, fica assim mesmo.

f)$\color{Indigo}{{(5 – 6x + 3xy + x^2y^3)}{(2 + 4xy)}}$

${(2\cdot 5) + 2\cdot (-6x) + 2\cdot(3xy) + 2\cdot(x^2y^3) + 4xy\cdot 5 + 4xy\cdot(-6x) + 4xy\cdot(3xy) + 4xy\cdot(x^2y^3)}$

$$\color{Indigo}{10 – 6x + 6xy + 2x^3y^4 + 20xy – 24x^2y + 12x^2y^2 +4x^3y^4}$$

Há dois pares determos semelhantes. Vamos agrupá-los e substituir pela soma algébrica dos mesmos.

${10 – 6x +(6xy + 20xy) + (2x^3y^4 + 4x^3y^4) + 24x^2y}$

${10 – 6x + 26xy + 6x^3y^4 + 24x^2y}$

Colocando os expoentes de x em ordem crescente ficamos com:

$$\color{Purple}{10 – 6x + 26xy + 24x^2y + 6x^3y^4}$$

g)$\color{Indigo}{{(4r^2 – 3pq)}{(5 + 3r – 2rq)}}$

${(4r^2)\cdot(5) + (4r^2)\cdot(3r) + (4r^2)\cdot((-2rq) +(-3pq)\cdot(5) + (-3pq)\cdot(3r) + (-3pq)\cdot(-2rq)}$

${20r^2 + 12r^3 – 8r^3q -15pq -9pqr +6pq^2r}$

Ordem crescente dos expoentes de r:

$$\color{Purple}{{-15pq  – 9pqr + 6pq^2r + 20r^2 + 12r^3 – 8r^3q}}$$

h)$\color{Indigo}{{(2ny – 3mx)}{(4nm + 2mx – 5mnx)}}$

${(2ny)\cdot(4nm) + (2ny)\cdot (2mx) + (2ny)\cdot(-5mnx) + (-3mx)\cdot(4nm) + (-3mx)\cdot(2mx) + (-3mx)\cdot(-5mnx)}$

$\color{Purple}{8n^2my + 4mnxy -10mn^2xy – 12m^2nx – 6m^2x^2 – 15m^2nx^2}$$

Não há termos semelhantes a reduzir.

Curitiba, 09 de abril de 2016. Republicado em 16 de dezembro de 2017.

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732

01.038 – Matemática – Álgebra. Redução de termos semelhantes

Redução de termos semelhantes.

O que significa esse título?

Imagine uma expressão algébrica com vários termos, sendo alguns deles semelhantes. Já sabemos, nesta altura dos acontecimentos, que sempre devemos buscar a expressão mais simples que for possível estabelecer, para facilitar qualquer solução que tenhamos em mente.

Devemos ter em mente que, em uma mesma expressão, não é aceitável que uma mesma letra (símbolo) represente mais de um valor. Por exemplo se $$\begin{align}\color{Sepia}{{x} = 5}\end{align}$$ em um termo de uma expressão algébrica, em todos os lugares em que aparecer a letra $\color{Red}{x}$, ela terá sempre o valor $\color{Red}{5}$. Então, as partes literais de vários termos algébricos semelhantes, terão o mesmo valor. O que distingue os termos entre si, são seus coeficientes. Isto indica quantas parcelas iguais serão somadas ou subtraídas entre si nesta expressão. Desta forma nos é possível substituir vários termos semelhantes por um único termo, cujo coeficiente seja a soma dos coeficientes numéricos daqueles.

Continue lendo “01.038 – Matemática – Álgebra. Redução de termos semelhantes”

01.036 – Matemática – Álgebra, introdução e conceitos básicos.

Iniciação à álgebra.

A origem da palavra “álgebra”, é um tanto dúbia. Supõe-se que tenha surgido a partir de um livro de um matemático árabe, escrito no ano 825 d.C. No título desse livro há a palavra “al-jabr” e o assunto é exatamente o estudo do que hoje denominamos com esse nome.

Traduzindo para uma linguagem comum e direta, consiste na substituição de números (algarismos) por letras ou outros símbolos. O uso das letras universalizou-se, uma vez que isso dispensa a criação de uma nova coleção de símbolos para representar números de qualquer valor. Usamos tanto o alfabeto latino, como o grego, além de alguns símbolos criados especialmente para indicar operações matemáticas. Poderia alguém perguntar:

  • Qual a utilidade de substituir números por letras?
  • À primeira vista, parece não oferecer nenhuma vantagem. Quando porém ingressamos nas aplicações mais complexas da matemática, para solucionar problemas, percebemos a utilidade desse procedimento. Há sempre um valor a ser determinado, que denominamos incógnita e aí começa o uso de letras para representar esses números desconhecidos em determinada situação.

Continue lendo “01.036 – Matemática – Álgebra, introdução e conceitos básicos.”

01.034 – Matemática, Exercícios resolvidos

Lista de exercícios

Resolvidos e comentados.

Uma pessoa, encontrou meus artigos sobre matemática (quatro operações, propriedades, potenciação e radiciação), que publiquei há um ano passado aproximadamente. Ali encontrou meus contatos e telefonou, para pedir ajuda. Trata-se de uma lista de exercícios sobre o assunto. Tentou me explicar por telefone e eu tentei lhe resolver, pela forma como entendi. Graças a Deus, eu tive a ideia de pedir que ele fizesse uma cópia (scanner) e me mandasse por e-mail, pois eu havia entendido erradamente e a resposta estaria errada. São ao todo 13 exercícios, alguns bastante simples de solucionar, outros exigem mais raciocínio, com aplicação de recursos aritméticos e algébricos.

Continue lendo “01.034 – Matemática, Exercícios resolvidos”

01.033 – Matemática – Aritimética, razão, proporção. Regra de três simples

Aplicação das proporções – Regra de três simples.

  • Uma das principais aplicações das proporções é a conhecida Regra de Três. Cabe talvez a pergunta, por que o nome Regra de Três? 

Na verdade, o nome se deve ao fato de serem fornecidos três valores e existir um quarto valor desconhecido. São valores de duas grandezas que se correspondem. A existência de proporção entre esses valores, permite que seja determinado o quarto valor, através do conhecimento dos outros três.

Vamos ver um exemplo.

Continue lendo “01.033 – Matemática – Aritimética, razão, proporção. Regra de três simples”

01.032 – Matemática, Aritimética. Fração, razão, proporção e suas propridades II

Proporções e suas propriedades.

  • No post anterior sobre o assunto, chegamos a ver três propriedades das proporções. Vamos lembrar:
  •  O produto dos extremos é igual ao produto dos meios. 
  • Alternando os extremos entre si, a proporção continua existindo.
  •  Alternando os meios entre si, a proporção continua existindo. 

OBS.: Se aplicarmos as propriedades dois e três ao mesmo tempo, equivale a aplicar uma quarta propriedade.

  •  Invertendo as posições dos antecedentes com seus consequentes, continuamos a ter uma proporção.
  • Vejamos o exemplo.
    • $\mathbf{\color{Navy}{{2\over 3} = {6\over 9}}}$
  • Se invertermos teremos.
    • $\mathbf{\color{Navy}{{3\over 2} = {9\over 6}}}$

Tanto na primeira como na segunda proporção teremos:

  • $\mathbf{\color{Navy}{{2\cdot 9} = {3\cdot 6}}}$
  • $\mathbf{\color{Navy}{{3\cdot 6}={9\cdot 2}}}$
  • Ambas as  multiplicações resultam em igualdades e dão o mesmo valor.

Continue lendo “01.032 – Matemática, Aritimética. Fração, razão, proporção e suas propridades II”

01.031 – Matemática – Aritmética, fração, razão, proporção

Razão. 

  • Normalmente essa palavra se refere a habilidade humana de raciocinar, pensar, elaborar teorias e conceitos. Aqui, na matemática, ela tem um significado ligeiramente diferente. Denominamos razão à divisão indicada entre dois números. Facilmente ela é confundida com uma fração, o que aliás não chega a ser nada muito grave, contanto que saibamos algumas regras aplicáveis às razões. Vamos começar com um exemplo. O fato de poder ser representada da mesma forma como as frações, não atrapalha o desenvolvimento do assunto.
  • $$\bbox[4px, border:2px solid Olive]{\mathbf{\color{Sepia} {5\div 8}}}$$
  • $$\bbox[4px, border:2px solid Olive]{\mathbf{\color{Sepia} {5\over 8}}}$$
  • $$\bbox[4px, border:2px solid Olive]{\mathbf{\color{Sepia} {5/8}}}$$

Continue lendo “01.031 – Matemática – Aritmética, fração, razão, proporção”

01.030 – Matemática – Aritmética, fração, razão, proporção, números decimais, dízimas periódicas (conversão)

Transformar dízimas periódicas em frações.

  • O que estou propondo é encontrar a fração que recebe o nome de geratriz da dízima periódica. Vamos começar com as dízimas denominadas simples, isto é, sem algarismos não repetidos. A parte periódica começa logo depois da vírgula. Vamos começar com um exemplo bem simples.
    • $\color{Brown}{0,33…= ?}$
    • $\mathbf{\color{Navy}{0,33 = {3\over 9}}}$
  • Temos uma fração cujos termos numerador e denominador tem divisor comum $\color{Navy}{3}$. Pode portanto ser simplificada para a forma irredutível, dividindo ambos os termos por$3$. Assim:
    • $\mathbf{\color{Navy}{{3\over 9 }  = {{3 \div 3}\over {9\div 3}} = {1\over 3}}}$
  • A geratriz é uma fração que tem como numerador o período (algarismos repetidos) e como denominador tantos algarismos 9, quantos forem os algarismos do período. No exemplo acima, havia apenas um algarismo no período, portanto, também usamos apenas um algarismo 9 no denominador. Se quiser tirar a prova basta dividir o numerador (1) pelo denominador (3) e encontrará a dízima periódica
  • Vejamos mais exemplos.
    • $\mathbf{\color{Navy}{0,5757…=?}}$ $\rightarrow$ $\mathbf{\color{Navy}{0,57 = {{57}\over {99}}}}$
  • A fração geratriz novamente apresenta os termos com o divisor comum $\color{Navy}{3}$ e podemos determinar a sua forma irredutível.
    • $\mathbf{\color{Navy}{{{57}\over {99}} = {{57 \div 3}\over {99 \div3}} = {{19}\over{33}}}}$
  • $\mathbf{\color{Navy}{0,437… = ?}}$
    • $\mathbf{\color{Navy}{0,437… = {{437}\over {999}}}}$
  • Não há como simplificar, pois não existe divisor comum entre os termos da fração geratriz além da unidade. Por isso ela permanece assim. Já está na forma irredutível.

Continue lendo “01.030 – Matemática – Aritmética, fração, razão, proporção, números decimais, dízimas periódicas (conversão)”

01.029 – Matemática – Aritimética, Fração, Razão, Proporção, Números (frações) decimais.

Frações decimais.

  • Pode parecer no primeiro momento que todas as frações são decimais ou números decimais, pois o resultado da divisão do numerador pelo denominador, via de regra, resulta em uma parte inteira, seguida da vírgula e uma ou mais casas decimais. Para não deixar dúvidas, vejamos os exemplos.
  • $\color{Navy}{{3 \div 5}  = 0,6}$
  • $\color{Navy}{{4 \div 7 }  = 0,571428571428…}$
  • $\color{Navy}{{10 \div 8} = 1,25 }$
  • $\color{Navy}{{10 \div 7} = 1,428571428571…}$
  • Podemos notar que existem frações onde a divisão termina exata, isto é, o resto é zero. Há outras em que o resto nunca dá zero e os algarismos decimais se repetem em uma mesma sequência. É o caso dos exemplos 2 e 4. Aquelas frações em que a divisão dá exata, isto é resulta um número decimal exato, sem sobrar resto, são as frações decimais ou números decimais exatos.
  • As frações que resultam em divisão não exata com repetição de algarismos, sobrando sempre um resto diferente de zero, são frações e o resultado da divisão recebe o nome de dízima periódica.  Esse nome vem do fato da repetição periódica dos algarismos resultantes no quociente. Teremos nesse caso sempre que optar por um valor arredondado, ou seja, aproximado, pois o número exato só é representado pela fração.

Continue lendo “01.029 – Matemática – Aritimética, Fração, Razão, Proporção, Números (frações) decimais.”

01.028 – Matemática – Aritimética. Frações, razão, proporção, operações com frações -Divisão.

Vamos dividir frações?

  • Ao estudar as quatro operações da aritmética, vimos que a divisão é a operação inversa da multiplicação. De onde poderíamos deduzir que, para dividir duas frações, basta dividir os numeradores entre si e os denominadores entre si. De fato, isso funciona, porém apresenta alguns problemas na hora de resolver. Mas existe uma maneira alternativa que é fácil de resolver e não apresenta dificuldades. Vamos ver um exemplo.
  • \[\bbox[4px,border:2px solid Olive]{\mathbf{\color{Navy}{{\frac{6}{10}}\div{\frac{2}{5}}}}}\]
  • Fica assim:
  • \[\mathbf{\color{Navy}{\frac{(6 / 2)}{(10 / 5)}  = \frac{3}{2}}}\]

Escolhi essas frações por que nelas não aparece nenhum problema para fazer a divisão entre numeradores e denominadores. Assim, fica mais fácil explicar o modo alternativo que iremos utilizar na continuação. O segredo é transformar a divisão em uma multiplicação e, para isso, basta inverter os termos da fração divisor. Assim:

  • \[\mathbf{\color{Navy}{\frac{\frac{6}{10}}{\frac{2}{5}} = \frac{6}{10}\times\frac{5}{2}}}\]

Cancelando os fatores comuns entre numeradores e denominadores temos:

  • \[\mathbf{\color{Navy}{\frac{2\times 3}{2\times 5}\times{\frac{5}{2}}= \frac{3}{2}}}\]
  • Vemos que o resultado é o mesmo e podemos portanto converter toda divisão de frações em multiplicação. Basta inverter a posição do numerador e denominador da fração divisor.

Vejamos outro exemplo:

  • \[\mathbf{\color{Navy}{{\frac{3}{5}}\div{\frac{4}{7}} = \frac{3\cdot 7}{5\times 4}  = \frac{21}{20}}}\]
  • Não há fatores comuns, mas a fração resultante é imprópria, podendo ser transformada em número misto.
  • \[\mathbf{\color{Navy}{\frac{21}{20} = 1\frac{1}{20}}}\]

Continue lendo “01.028 – Matemática – Aritimética. Frações, razão, proporção, operações com frações -Divisão.”