043.1 – Matemática, Álgebra – Produtos notáveis, quadrado da diferença de dois números

– Quadrado da diferença de dois números

A mesma coisa que acontece no caso da soma, também ocorre com a diferença. Os números são representados por letras, formando no final a multiplicação de dois binômios iguais. Seja o exemplo:

$\underbrace{( a – b)^2} $

A letra $a$ é o primeiro termo e a letra $b$ é o segundo termo da diferença. 

$\underbrace{( a – b)}\cdot{\underbrace{(a – b)}} $

Cada termo do primeiro fator é multiplicado por todos os termos do segundo fator. O que resulta em:

$\underbrace{{a}\cdot {a}} + \underbrace{ {a}\cdot {(-b) }} + \underbrace{{(-b)}\cdot {a}} + \underbrace{{-b}\cdot{b}} $

$ a^\underbrace{(1+ 1)} \underbrace{- ab – ba} + b^\underbrace{(1 + 1)} $

${ a^2 – 2ab + b^2} $

Os dois termos (- ab) e (-ba), são semelhantes, pois a ordem dos fatores pode ser alterada sem causar problemas no resultado. Basta aplicar a propriedade comutativa da multiplicação. Assim passamos a ter que:

“O quadrado da diferença entre dois números é igual ao quadrado do primeiro termo, menos o duplo produto (dobro) do primeiro termo pelo segundo, mais o quadrado do segundo termo”.

Bom como lembrete!

Também aqui os expoentes das partes literais seguem a mesma sequência como acontece no quadrado da soma. A única diferença é que os sinais que precedem os termos, são alternadamente +, – e +. Isso facilita a recordação do resultado de um produto notável desse tipo.

Expoentes de $a$:  $2 > 1 > 0$$\Rightarrow$ ordem decrescente

Expoentes de $b$: $ 0 < 1 < 2$$\Rightarrow$ ordem crescente

Se tivermos para $a$ o valor $7$ e para $b$ o valor $2$ e substituirmos na forma da diferença e na forma de trinômio quadrado, teremos:

${(a – b)}^2$

${(7 – 2)^2} = 5^2 = 25$

$ a^2 – 2ab + b^2 $

$ 7^2 –  2\cdot{7}\cdot{2} + {2}^2$

$ 49 – 28 + 4 = 21 + 4 =  25$

NOTA: Percebemos que o resultado é o mesmo.

Vamos exercitar:

a) $\underbrace{(x – y)^2}$

O primeiro termo é a letra $x$ e o segundo termo é a letra $y$.

$\underbrace{(x – y )}\cdot\underbrace{(x – y)}$

$ {x^2 – 2xy + y^2}$

b) $\underbrace{(3x – 2y)^2}$

O primeiro termo é $3x$ e o segundo termo é $2y$.

$\underbrace{3x – 2y}\cdot{\underbrace{3x – 2y}}$

${(3x)}^2 – \underbrace{ 2\cdot {(3x)}{(2y)}} +{(2y)}^2$

$ {9x^2 – 12xy + 4y^2} $

c) $\underbrace{(ab – bc)^2}$

O primeiro termo é $ab$ e o segundo termo é $bc$.

$\underbrace{(ab – bc)}\cdot\underbrace {(ab – bc)} $

${(ab)}^2 – \underbrace{ 2\cdot{(ab)}{(bc)}} + {(bc)}^2 $

$ {a^{2}b^{2} – 2ab^{2}c + b^{2}c^{2} }$

d) $\underbrace{(5 – 2a)^2}$

$\underbrace {(5 – 2a)}\cdot{\underbrace{(5 – 2a)}}$

$ {5^2 -\underbrace{ 2\cdot 5\cdot{2a}} + {(2a)}^2}$

${ 25 – 20a + 4a^2 }$

Obs.: Note que tanto o quadrado da soma como da diferença, resulta sempre em um trinômio, onde há dois termos que são quadrados e um termo que representa o produto dos dois termos. Costumeiramente esses trinômios recebem o nome de Trinômio quadrado perfeito. Voltaremos a falar neles em outro momento, ou seja por ocasião da  fatoração. 

Resolva aplicando a regra acima, os quadrados das diferenças entre dois números da seguinte sequência.

a)${(5ax – 3bx)}^2= ?$

b)${(Axy – Byz)}^2= ?$

c)${(4rp^2 – 3pq)}^2= ?$

d)${(5xy^3 – 3xy^2)}^2= ?$

e)${(mz – my)}^2= ?$

f)${(2aj – 3bj)}^2= ?$

g)${(6gx – 7gy)}^2= ?$

h)${(3my – 4n)}^2= ?$

Curitiba, 09 de junho de 2018

Décio Adams

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/adamsdecio

@AdamsDcio

Telefone: (41) 3019-4760

Celulares: (41) 99805-0732

Deixe uma resposta