01.023 – Matemática – Aritmética. Potenciação de números relativos

Potências de números relativos.

Para começar o assunto, vamos lembrar que potenciação é uma multiplicação de fatores iguais. Portanto iremos fazer uso do assunto visto no post anterior sobre a multiplicação. Vamos aos exemplos.

$$\begin{align}{(+ 3)^3}& = {(+3)\times (+3)\times (+3)}& ={+ 27}\end{align}$$

$$\begin{align}{(+ 2)^2} &= {(+2)\times(+2)}& = {+ 4}\end{align}$$

$$\begin{align}{(- 5)^2}&={(- 5)\cdot(- 5)}& = { + 25}\end{align}$$

$$\begin{align}{(-4)^3}&= {(- 4)\times(- 4)\times(- 4)}&= {- 64}\end{align}$$

$$\begin{align}{(- 2)^4}& ={(-2)\times(-2)\times(-2)\times(-2)}&= {+16}\end{align}$$

$$\begin{align}{(-3)^5}&={(-3)\times(-3)\times(-3)\times(-3)\times(-3)}&= {-243}\end{align}$$

Continue lendo “01.023 – Matemática – Aritmética. Potenciação de números relativos”

01.022 – Matemática – Aritmética. Multiplicação e divisão de números relativos

Multiplicação de relativos.

  • Números positivos.

    Vamos multiplicar os números:

  • $\bbox[4px,border:2px solid Olive]{\color{Brown}{(+5)\times (+3)}}$
    • $\color{Navy}{(+5)\times (+3) = (+5) + (+5) + (+ 5) = 15}$
  • $\bbox[4px,border:2px solid Olive]{\color{Brown}{(+4)\times(+2)}}$
    • $\color{Navy}{(+4 )\times (+2)= (+4) + (+4)= 8}$
  • Para multiplicar números positivos multiplicamos os módulos e ao resultado damos o sinal (+). 

Obs.: Temos que lembrar de uma coisa. A multiplicação é uma soma de parcelas iguais. Temos o multiplicando e o multiplicador, isto é, o número que está sendo multiplicado e o que está multiplicando. Nada impede a inversão dessas posições, de acordo com a propriedade comutativaIsso transforma a multiplicação em uma soma de tantas parcelas (multiplicando), iguais a quantidade expressa pelo multiplicador.

  • Números negativos.

  • Sejam os números:

    $\bbox[4px,border:2px solid Olive]{\color{Brown}{(- 4)\times (- 5)}}$

    $\bbox[4px,border:2px solid Olive]{\color{Brown}{(- 7)\times (- 4)}}$

    • $\color{Navy}{(-4)\times (-5) = {- (-4) – (-4) – (-4) – (-4) – (-4) = 4 + 4 + 4 + 4 + 4}= 20}$
    • $\color{Navy}{(- 7)\times (-4) = – (-7) – (-7) – (-7) – (-7) =  7 + 7 + 7 + 7 = 28}$
  • Ao multiplicar dois números negativos, multiplicamos os módulos e atribuímos o sinal (+).
  •  Resumindo podemos dizer que na multiplicação de números de sinais iguais, o resultado é positivo. 
  • Números de sinais contrários.

Sejam os números:

  • $\bbox[4px,border:2px solid Olive]{\color{Brown}{(- 6)\times (+ 3)}}$
  • $\bbox[4px,border:2px solid Olive]{\color{Brown}{(+ 7)\times (-4)}}$
  • $\color{Navy}{(- 6)\times (+3) = +(-6) + (-6) + (-6) = -6 -6 -6 = -18}$
  • $\color{Navy}{(+ 7)\times (-4) = -( +7) – (+7) – (+ 7) – (+7) = – 7 – 7 – 7 – 7 = – 28}$
  • A multiplicação de números de sinais contrários é igual ao produto dos módulos, com o sinal (-), sem importar a ordem dos fatores. 

Resumindo

  • $\bbox[4px,border:2px solid Olive]{\color{Brown}{(+)\times (+) = \{+\}}}$
  • $\bbox[4px,border:2px solid Olive]{\color{Brown}{(-)\times (-) = \{+\}}}$
  • $\bbox[4px,border:2px solid Olive]{\color{Brown}{(+)\times (-) = \{-\}}}$
  • $\bbox[4px,border:2px solid Olive]{\color{Brown}{(-)\times (+) = \{-\}}}$

Continue lendo “01.022 – Matemática – Aritmética. Multiplicação e divisão de números relativos”

01.021 – Matemática, aritimética. Adição e subtração de números relativos.

Operações com números relativos – adição.

  • Números com o mesmo sinal e sinais opostos.

Vamos usar exemplos práticos. Você e seu irmão trabalham, recebendo por dia de serviço. Se seu trabalho rende $\color{Navy}{R\$ 100,00}$ por dia e o de seu irmão $\color{Navy}{R\$ 110,00}$ por dia. Quanto terão a receber ao final de um dia de serviço?

É fácil dizer que a soma será de $\color{Brown}{100,00 + 110,00 = 210,00}$. Representando os valores ganhos como números positivos, podemos escrever:

$$\color{Maroon}{(+100) + (+110,00)= + 210,00}$$

Vamos supor que vocês compraram uma muda de roupas para cada um, gastando $\color{Navy}{R\$ 90,00}$ na sua roupa e $\color{Navy}{R\$ 85,00}$ na roupa do seu irmão. O dinheiro gasto, podemos representar por valores negativos, pois irão diminuir o saldo disponível.

  • $$\color{Navy}{(- 90,00) + (- 85,00) = -175,00}$$

Vamos determinar o saldo que sobra no seu bolso e no de seu irmão.

  • $$\color{Navy}{(+100,00) + (- 90,00)= +10,00}$$

No seu bolso haverá o saldo de $\color{Brown}{R$ 10,00}$.

  • $$\color{Navy}{(+ 110,00) +(- 85,00)= +25,00}$$

No bolso de seu irmão, haverá um saldo de $\color{Brown}{R$ 25,00}$.

Continue lendo “01.021 – Matemática, aritimética. Adição e subtração de números relativos.”

01.020 – Matemática, aritmética. Números inteiros relativos.

Números relativos.

Nos primórdios da matemática, surgiram primeiramente os números, hoje denominados Números Naturais, associados a quantidades de objetos. A necessidade de exprimir quantidades que não representam um número inteiro de objetos, fez surgir as divisões decimais. Os algarismos após a vírgula, mas exatos, ou as dízimas periódicas. Isso ampliou grandemente as opções de resolução de problemas. Persistia no entanto um problema. A subtração só era possível se o minuendo tivesse valor maior que o subtraendo. Isso deixava a operação de subtração impossível em muitas situações. Como a necessidade costuma resultar no surgimento de inovações, foi também aqui que surgiu o que hoje conhecemos como Conjunto de Números Inteiros Relativos e posteriormente, os Racionais Relativos. 

Continue lendo “01.020 – Matemática, aritmética. Números inteiros relativos.”

01.019 – Matemática – Aritmética, Teoria dos conjuntos. Diferença entre conjuntos

Diferença entre conjuntos.

Em artigos anteriores falamos de intersecção, reunião ou união, conjuntos disjuntos. Faltou apenas uma coisa. Diferença entre dois conjuntos A e B.

  • Denominamos diferença entre os conjuntos$\color{Navy}{A}$ e $\color{NavyBlue}{B}$, ao conjunto dos elementos pertencentes ao conjunto $\color{NavyBlue}{A}$ , que não pertencem ao conjunto $\color{NavyBlue}{B}$ . Um Diagrama de Venn pode nos mostrar graficamente como é.
  • $\color{Brown}{A = \{m, n, o, p, q\}}$
  • $\color{Brown}{B =\{p, q, r, s, t\}}$
  • $\color{OliveGreen}{A – B = \{m, n, o\}}$ ou $\color{OliveGreen}{A/B = \{m, n, o\}}$
  • $\color{OliveGreen}{B – A = \{r, s, t\}}$ ou  $\color{OliveGreen}{B/A = \{r, s, t\}}$

Continue lendo “01.019 – Matemática – Aritmética, Teoria dos conjuntos. Diferença entre conjuntos”

01.015 – Matemática, aritmética, operações com naturais, radiciação – Propriedades

Potenciação de radicais.

  • Radicais com radicandos de mesma base.

Exemplo: $\bbox[4px,border:2px solid Olive]{\color{Blue}{\sqrt[3]{({3^2})^2} = {(\sqrt[3]{3^2}})^2} = {\sqrt[3]{3^2}}^2}$

Vamos transformar em multiplicação de radicais:

  • $\color{Blue}{\sqrt[3]{3^2}\times\sqrt[3]{3^2} = \sqrt[3]{3^{2+2}} = \sqrt[3]{3^{2\times 2}} = \sqrt[3]{3^4}}$

Note que o radicando agora tem como expoente o número 4, produto dos expoentes interno e externo. Como o expoente é maior que o índice, podemos decompor o radicando em uma multiplicação de potências de modo que uma tenha expoente múltiplo do índice. Assim:

  • $\color{Blue}{\sqrt[3]{3^4} = \sqrt[3]{3^{3 + 1}} = \sqrt[3]{3^3}\times\sqrt[3]{3^1} = 3\times \sqrt [3]{3}}$
  • Temos ao final uma forma simplificada da expressão inicial. O valor permanece exatamente o mesmo do inicial.

Vejamos outro exemplo: $\color{Blue}{\sqrt[4]{({5^3})^4} = {(\sqrt[4]{5^3})^4} = {\sqrt[4]{5^3}}^4}$

Na forma de multiplicação:

  • $\color{Blue}{\sqrt[4]{5^3}\times\sqrt[4]{5^3}\times\sqrt[4]{5^3}\times\sqrt[4]{5^3} = \sqrt[4]{5^{(3 + 3 + 3 + 3)}} = \sqrt[4]{5^{(4\times 3)}} = \sqrt[4]{5^{12}}}$

O expoente do radicando é múltiplo do índice. Portanto podemos simplificar, ou dividir o expoente pelo índice.

  • $\color{Brown}{\sqrt[4]{5^{12}} = 5^ \frac {12}{4} = 5^3}$
  • Portanto podemos fazer sempre a multiplicação entre os expoentes interno e externo. 
  • Façamos alguns exercícios aplicando o que foi visto acima. Simplifique os radicais.
  • $\color{Brown}{(\root 2\of {3^3})^4 = ?}$
  • $\color{Brown}{(\root 5\of {7^4})^3 = ?}$
  • $\color{Brown}{(\root 6\of {4^3})^4 = ?}$
  • $\color{Brown}{(\root 3\of {5^4})^3 = ?}$
  • $\color{Brown}{(\root 9\of {7^3})^5 = ?}$
    • O mesmo raciocínio se aplica a um produto de radicais, elevado a uma potência. Bastará multiplicar cada um dos expoentes internos pelo externo, como no exemplo abaixo.
    • $\color{Blue}{\left(\sqrt[3]{2^2}\times\sqrt[3]{3^3}\times\sqrt[3]{2^3}\times\sqrt[3]{2}\times\sqrt[3]{3^2}\right)^2 =\\ {\sqrt [3]{2^2}}^2\times{\sqrt[3]{3^3}}^2\times{\sqrt [3]{2^3}}^2\times{\sqrt[3]{2}}^2\times{\sqrt [3]{3^2}}^2 }$
    • $\color{Blue}{\sqrt[3]{2^4}\times\sqrt[3]{3^6}\times\sqrt[3]{2^6}\times\sqrt[3]{2^2}\times\sqrt[3]{3^4}}$
  • Agrupando os radicais com potências de mesma base, teremos:
  • $\color{Blue}{\sqrt[3]{2^4}\cdot\sqrt[3]{2^6}\cdot\sqrt[3]{2^2}\cdot\sqrt[3]{3^6}\cdot\sqrt[3]{3^4}\\ =\sqrt [3]{{2^4}\cdot{2^6}\cdot{2^2}}\cdot\sqrt[3]{{3^6}\cdot{3^4}}}$
  •  $\color{Blue}{\sqrt[3]{2^{(4 + 6 + 2)}}\times\sqrt[3]{3^{(6 + 4)}}}$
  • $\color{Blue}{\sqrt[3]{2^{12}}\times\sqrt[3]{3^{10}}=2^{\frac {12}{3}}\times 3^{\frac {10}{3}} = 2^4\times 3^{\frac{9}{3}}\times 3^{\frac {1}{3}}}$ $\color{Blue}{16\times{3^3}\times\sqrt[3]{3} = 16\cdot 27\cdot\sqrt[3]{3}}$
  • $\color{Blue}{432\cdot\sqrt[3]{3} =({\root5\of {3^2}}\times{\root5\of {5^3}}\times{\root5\of {3^4}})^3}$
  •  $\color{Blue}{\root5\of {3^2}^{3}\times\root5\of{5^3}^{3}\times\root5\of{3^4}^{3}=\root 5\of {3}^{6}\times\root5\of {5}^{9}\times\root5\of 3^{12}}$
  • $\color{Blue}{\root5\of 3^{9 + 12}\times\root5\of 5^{5 + 4}}$
  • $\color{Blue}{\root5\of 3^{20}\times\root5\of {3}\times\root 5\of 5^5\cdot \root5\of {5^4} = 3^{4}\times 5\cdot \root 5\of {3\times {5^{4}}}}$
  • $\color{Blue}{405\times \root 5\of {3\times {5^4}} = 405\times\root 5\of {1875}}$
  • Exercitando um pouco.
    • Simplifique as expressões.
      • $\color{Brown}{(\root 3\of {4^2}\times\root 3\of {2^3}\times\root 3\of {5^4})^3 = ?} $
      • $\color{Brown}{(\root 4\of {3^5}\times\root 4\of {6^3}\times\root 4\of {2^4})^5 = ?}$
      • $\color{Brown}{(\root 5\of {7^3}\times\root 5\of {5^4}\times\root 5\of {3^4}\times\root 5\of {15^5})^4 = ?}$
      • $\color{Brown}{(\root 2\of {3^5}\times\root 2\of {9^2}\times\root 2\of {6^3}\times\root 2\of {4^3}\times\root 2\of {6^3})^3 =?}$

Trabalhar com os radicais, usando as propriedades adequadas, permite quase sempre chegar a expressões bem mais simplificadas do que se apresentam inicialmente.

Obs.: Em caso de dúvidas sobre o conteúdo ou exercícios, faça contato por meio de um dos canais abaixo. Estou aberto a quaisquer perguntas sobre o assunto. Disponha. 

Curitiba, 04 de março de 2015 (Reformulado e melhorado em 16 de julho de 2016). Revisto e republicado em 03/11/2017.

Décio Adams

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 9805-0732

01.013 – Matemática – Aritmética, operações com naturais. Radiciação.

O caminho inverso. – Radiciação.

Assim como em outras situações, estamos vendo que, a cada nova operação matemática que aprendemos, logo depois aparece outra, que faz o caminho contrário. E não seria diferente com a potenciação.

  • Vamos pegar um número, potência de 3. Esse número vai ser 243. Vamos decompor em seus fatores, para sabermos qual é o expoente ao qual foi elevada a base 3, para encontrar 243.
  • Fizemos cinco divisões sucessivas por $3$, até resultar quociente $1$. Dessa forma temos que $\color{Blue}{3^5 = 243}$
  • Então podemos representar:
  • $\color{Blue}{243 = 3^5 = 3\times3\times3\times3\times3} $

A base 3, elevada ao expoente 5 e obtemos a potência 243.

  • Neste caso dizemos que 3 é a raiz quinta de 243.

Essa operação inversa se denomina Radiciação  e se representa na forma de um radical, onde temos:

  • Radicando é número cuja raiz estamos determinando.
  • Índice é o número que indica o expoente ao qual deve ser elevada a raiz para resultar o radicando.
  • Raiz é a base da potenciação que resulta no radicando.

Assim, usando o símbolo:\[\bbox[4px,border:2px solid Olive]{\color{Blue}{ \root 5 \of {243} = 3}}\]

Continue lendo “01.013 – Matemática – Aritmética, operações com naturais. Radiciação.”

01.012 – Matemática – Aritimética, operações com naturais. Potenciação II

Buscas na internet.

Pesquisando na internet, descobri que nos últimos dias a procura pelo assunto potenciação, por parte dos internautas, aumentou quase 100%. Isso significa que estou atacando um dos assuntos procurados. Vamos seguir mais um pouco. Apresentar mais alguns detalhes sobre o assunto.

  • Vamos ver como se faz uma multiplicação de potências iguais.
  • Assim: $\color{Blue}{3^2\times 3^2\times 3^2\times 3^2 = (3^2)^4}$
  • Temos agora uma potência de potência, isto é, três elevado ao quadrado, elevado a quarta potência.
  • Vamos aplicar no começo, a regrinha da multiplicação de potências de mesma base.
  • Teremos:$\bbox[4px,border:2px solid Olive]{\color{Blue}{3^{(2+2+2+2)} = 3^8}}$

Se observarmos bem, os expoentes na expressão $\color{Blue}{{[(3)^2]}^4}$, vemos que, se multiplicarmos os expoentes $\color{Blue}{2\times 4= 8}$ ou seja a soma dos expoentes das potências iguais.

Dessa forma pode-se afirmar que:

  • “Para elevar uma potência a outra potência, basta conservar a base e multiplicar os expoentes”.
  • Vamos exercitar um pouco?
    • $\color{Blue}{[(4)^2]^3 = 4^{(2\times 3)} = 4^6}$
    • $\color{Blue}{[(7)^3]^3 = 7^{(3\times 3)} = 7^9}$
    • $\color{Blue}{[(11)^4]^2 = (11)^(4\times 2) = (11)^8}$
    • $\color{Blue}{{[(5)^4]^5} = 5^{(4\times 5)} = 5^{20}}$

Fica muito simples perceber que a operação potenciação apresenta bem mais possibilidades de aplicações úteis, do que meramente substituir uma multiplicação por uma expressão mais simples, mais curta. Começam a pintar várias novidades. O que vimos até aqui é apenas um pequeno vislumbre do que é possível. Mas vamos devagar. Um degrau de cada vez.

Vamos recordar o que já vimos até aqui?

  • Transformar potências em multiplicações de fatores iguais.
    • $\color{Blue}{7^3 = ?}$
    • $\color{Blue}{5^2 = ?}$
    • $\color{Blue}{8^6 = ?}$
    • $\color{Blue}{3^4 = ?}$
    • $\color{Blue}{2^5 = ?}$
  • Escrever na forma de potências as multiplicações.
    • $\color{Blue}{3\times3\times3\times3\times5\times5\times5 = ?}$
    • $\color{Blue}{5\times5\times5\times5\times5\times5 = ?}$
    • $\color{Blue}{4\times4\times4\times4\times4\times4\times4\times4 = ?}$
    • $\color{Blue}{{11}\times{11}\times{11}\times{11}\times{11} = ?}$
    • $\color{Blue}{7\times7\times7\times7 = ?}$
  • Escrever o resultado das potências.
    • $\color{Blue}{3^3 = ?}$
    • $\color{Blue}{5^3 = ?}$
    • $\color{Blue}{2^5 = ?}$
    • $\color{Blue}{7^1 = ?}$
    • $\color{Blue}{6^0 = ?}$
    • $\color{Blue}{(500)^0 = ?}$
    • $\color{Blue}{(50)^1 = ?}$
  • Efetuar as multiplicações de potências de mesma base.
    • $\color{Blue}{{3^2}\times{3^4}\times{3^2}\times{3^3}\times{3^5} = ?}$
    • $\color{Blue}{{5^4}\times{5^3} = ?}$
    • $\color{Blue}{{4^0}\times{4^3}\times{4^5} = ?}$
    • $\color{Blue}{{6^2}\times{6^3}\times{6^3}\times{6^2} = ?}$
    • $\color{Blue}{{7^5}\times{7^1}\times{7^2} =?}$
  • Efetuar as divisões das potências de mesma base.
    • $\color{Blue}{{(5^8)}\div {(5^3)} = ?}$
    • $\color{Blue}{{(13)^5}\div{(13)^2} = ?}$
    • $\color{Blue}{{(4^7)}\div{(4^7)} = ?}$
    • $\color{Blue}{{(6^3)}\div{(6^1)} = ?}$
    • $\color{Blue}{{(8^6)}\div{(8^5)} = ?}$
  • Vamos dar mais um passinho?
    • E se o expoente for uma potência?
    • $\color{Blue}{5^{3^2} = 5^9}$
  • Trata-se agora de um expoente exponencial. Antes de elevarmos a base ao expoente, precisamos efetuar a potência desse expoente. Ou seja, precisamos efetuar o$\color{Brown}{3^2= 9}$ e depois elevar o 5 à nona potência. Teremos então: $\color{Brown}{5^9}$

Note que se multiplicássemos os expoentes ($\color{Brown}{3\times 2 =6}$, teríamos $\color{maroon}{5^{3\times 2} = 5^6}$, que é totalmente diferente. Notamos que a coisa fica um pouco mais complexa. Portanto cuidado. Potência de potência não é o mesmo que potência com expoente exponencial. Felizmente o uso dessa forma é menos comum, do que a primeira. Um pouco de exercício faz bem, né!

  • Efetue as potências indicadas.
    • $\color{Blue}{7^{5^2} = ?}$
    • $\color{Blue}{5^{3^1} = ?}$
    • $\color{Blue}{6^{4^3} = ?}$
    • $\color{Blue}{8^{3^4} = ?}$
    • $\color{Blue}{9^{2^3} = ?}$
  • Adendo: leitor me enviou a seguinte pergunta, ou melhor questão: Realizar a divisão que ele encontrou num livro ou apostila e não entendeu como resolver.
  • Exercício de divisão
    Exercício de divisão
  • A divisão apresentada é a divisão de duas potências. Seria assim:
  • $\color{Blue}{{{{{{2^3}^2}^1}^8}^7}^6}\div {{{{{{4^2}^2}^8}^0}^9}^6}$
  • Vemos uma sucessão de potências em número de 6 (seis). À primeira vista parece algo difícil de resolver. Se fôssemos desenvolver tudo, iriamos fazer uma montanha de cálculos desnecessários. Não podemos esquecer que a matemática tem alguns atalhos que nos levam à resposta num piscar de olhos. Aquele problema gigante, se resolve num clic.
  • Acompanhem o raciocínio. Na potência dividendo, temos no quarto expoente de cima para baixo o número 1(um). Isto significa que iremos elevar 1(um) ao expoente que existir acima dele e o resultado só pode ser 1(um). Continuando vamos ter:
  • $\color{Blue}{2^1 = 2}$
  • Para terminar temos $\color{Blue}{3^2 = 9}$
  • Reduzimos o dividendo à potência $\color{Blue}{2^9}$
  • No divisor vamos encontrar na terceira posição, do último expoente para baixo. Sabemos que qualquer expoente para 0(zero), resulta igual a 0(zero).
  • O próximo expoente é 8, e vamos ter $\color{Blue}{8^0 = 1}$
  • Na sequência temos o expoente 2 e fica $\color{Blue}{2^1 = 2}$
  • Terminamos com $\color{Blue}{2^2 = 4}$
  • Passamos a ter $\color{Blue}{4^4} = {(2^2)}^4 = {2^{2×4}} =2^8 $
  • Efetuando a divisão $\color{Blue}{{2^9}\div{2^8} = 2^{9-8} = 2^1 = 2}$.
  • Este resultado comprova que a resposta indicada na figura é a correta.
  • Andamos mais um passo. Se você for um dos que procuraram pelo assunto potenciação na internet e tiver interesse em aprofundar o assunto, entre em contato comigo nos endereços que constam abaixo do artigo. Estou a disposição para orientar e tirar suas dúvidas. Legal?

Curitiba, 31 de janeiro de 2015. (Republicação em 02/11/2017).

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732

01.008 – Matemática – aritmética. As quatro operações – adição.

250px-Aritmetica_calandri_handschrift.02
Figura da Idade Média, relativa a aritmética.

Aritmética.

Essa palavra designa a parte da Matemática que nos apresenta ao mundo dos números. Começamos por aprender a contar, associar um símbolo aos números que correspondem às quantidades de objetos que contamos. Esses símbolos denominamos algarismos, e os mais usados no mundo hoje em dia são os hindu arábicos. Essa denominação é devida ao fato de sua origem ter ocorrido na India e depois foram aperfeiçoados na Arábia. Depois de dominarmos a escrita e leitura dos números, fazendo o uso adequado da posição dos algarismos, começamos a aprender as quatro operações:

  • Adição

Consiste na reunião dos elementos de dois ou mais conjuntos. A quantidade de elementos resultante é denominada soma. A soma será o número de elementos do novo conjunto formado pela reunião dos primeiros. Por exemplo. Seja o conjunto $\color{Navy}{A =\varnothing}$ e $\color{Navy}{B = \{ O\}}$. O primeiro conjunto é vazio, isto é não tem nenhum elemento. Então o número de elementos é $\color{Navy}{n(A) = 0}$. O segundo conjunto tem apenas uma letra “O“. Portanto $\color{Navy}{n(B) = 1}$. Vamos representar isso num desenho.

Rendered by QuickLaTeX.com

  • Vamos reunir os elementos dos dois conjuntos em um único conjunto e contar a quantidade de elementos resultante.

Rendered by QuickLaTeX.com

  • Notamos que da reunião dos dois conjuntos resultou um novo conjunto com um único elemento. Isto nos permite afirmar que a adição dos números 0 (zero) com o número 1(um), resulta na soma 1 (um). Ou seja adicionar 0 (zero) com qualquer número não altera o resultado.
    • $\color{Navy}{0 + 1 = 1}$
  • Vejamos agora dois conjuntos, tendo o primeiro 1(um) elemento e o outro 2(dois) elementos. Façamos a reunião dos mesmos e vejamos quantos elementos resultam.

Rendered by QuickLaTeX.com

Rendered by QuickLaTeX.com

  • Notamos que o conjunto que reúne os dois conjuntos é um conjunto com um total de 3(três) elementos. Portanto:
  • $\color{Navy}{ 1 + 2 = 3 }$
  • Este procedimento de juntar os elementos de dois ou mais conjuntos você pode fazer usando os dedos de suas mãos. Vejamos mais um exemplo. Um conjunto M com três elementos e um conjunto N com quatro elementos.

Rendered by QuickLaTeX.com

Vemos na figura dois conjuntos com o mesmo tipo de elementos. O conjunto M formado por três elipses e o conjunto N por 4 elipses. Podemos reunir todos em um único conjunto e ver quantos serão os elementos do do novo conjunto formado pela reunião dos dois.

Rendered by QuickLaTeX.com

Se contarmos o número de elementos existentes no novo conjunto encontraremos como resultado o número 7. Isto nos permite afirmar que a adição dos números que representam a quantidade de elementos dos dois conjuntos que foram reunidos, tem como resultado 7 (sete). Simbolicamente fica:

  • $\color{Navy}{ 3 + 4 = 7} $
  • Se você quiser fazer a adição de 5 ovos com 7 ovos, usando os dedos das mãos, como irá proceder?
    • Em condições normais, você terá em sua mão esquerda 5 dedos, que podem representar os 5 ovos. Na outra mão terá também 5 dedos, que poderão representar outros 5 ovos. Se você continuar contando, depois do cinco vem o seis e logo o sete. Portanto faltarão dois dedos. Conte os dedos da mão esquerda, os da mão direita, chegando a 10, e volte a contar mais dois da mão esquerda. Deverá obter o número 12. Ou seja:
    • $\color{Navy}{ 5 + 7 = 5 + 5 + 2 = 12 }$
    • 6 uvas + 3 maçãs = 9 frutas, mas não serão 9 uvas, nem 9 maçãs. Em geral não adicionamos coisas diferentes.
  • Os números que somamos são chamados parcelas. O número de parcelas de uma adição, não tem limites e nem importa a ordem em que as adicionamos, contanto que façamos o processo de maneira correta.

Addition_Table.svg
Tabela de dupla entrada. Os números na primeira linha e coluna, tem suas somas no cruzamento das respectivas linhas e colunas.

  • A tabela apresentada acima, pode ser útil para obter a soma da adição de números entre 0(zero) e 9 (nove). Pode substituir os dedos ou outros objetos no momento de realizar a adição de números.
  • Adição de números maiores.

  • Sejam, por exemplo as parcelas $\color{Navy}{ 149 + 214 = ?}$
  •      Eles serão escritos um sobre o outro, formando a coluna das unidades, a coluna das dezenas, centenas, milhares e assim até o final. Começamos a efetuar pelas unidades e assim sucessivamente, até completar a adição. O número formado será a soma das parcelas.

Adição de números com vários algarismos20160710_12151978
Adição de números com vários algarismos em colunas 1

  • Na figura ao lado, vemos efetuada a adição dos dois números dados. Observe que adicionamos a partir das unidades. No caso $\color{Navy}{ 9 + 7 = 16}$. Escrevemos as unidades 6 (seis) abaixo da linha horizontal e a dezena, colocamos acima do 4 (quatro), na coluna das dezenas. Repetimos o processo e obtemos $\color{Navy}{1 + 4 + 1=6}$ (seis) dezenas. Não temos nenhuma centena. Adicionamos a coluna das centenas e resulta a soma $\color{Navy}{366}$.
  • Ao lado temos a adição $\color{Navy}{164 + 98 = ?}$. Na formação das colunas, a casa das centenas ficou vaga para o segundo número, uma vez que temos um número sem nenhuma centena. $\color{Navy}{4 + 8 = 12}$, nos dá duas unidades e uma dezena. Escrevemos as duas unidades abaixo da linha horizontal e a dezena colocamos acima dos algarismos das dezenas. Somamos $\color{Navy}{ 1 + 6 + 9 = 16}$ que nos dá seis dezenas de unidades e uma centena. O seis vai ao lado do dois, na casa das dezenas e a centena, acima dos algarismos das centenas. Somamos $\color{Navy}{1 + 1 = 2}$, resultam duas centenas e a soma dos números é igual a $\color{Navy}{262}$.
  • Tomemos mais dois exemplos.
    • $\color{Navy}{1537 + 7259 = ? }$
    • $\color{Navy}{2836 + 475 =?}$

Adição de números com vários algarismos 220160710_12385712
Adição de números com vários algarismos 2

  • Note que devemos colocar os algarismos na posição correta e sempre efetuar a adição da direita (unidades) para esquerda, seguindo a ordem das dezenas, centenas e demais classes. A adição de $\color{Navy}{7 + 9 = 16}$. Seis unidades e uma dezena que irá ser adicionada na segunda coluna. Assim $\color{Navy}{1 + 3 + 5 = 9}$. Escrevemos as nove dezenas na segunda coluna, ao lado esquerdo das seis unidades da primeira coluna. Adicionamos $\color{Navy}{5 + 2 = 7}$ e depois $\color{Navy}{1 + 7 = 8}$. O resultado (soma) será o número ${8796}$. Procedemos da mesma maneira com os outros dois números.
  • Vamos exercitar.

    • Efetue as adições dos números, utilizando os dedos, outros objetos e mesmo a tabela apresentada acima.
      • $\color{Blue}{9 + 12 = ?}$
      • $\color{Blue}{15 + 8 = ?}$
      • $\color{Blue}{16 + 9 = ?}$
      • $\color{Blue}{21 + 5 = ?}$
      • $\color{Blue}{33 + 4 = ?}$
      • $\color{Blue}{27 + 3 = ?}$
      • $\color{Blue}{35 + 8 =  ?}$
    • Efetue as adições dos números, escrevendo em colunas, como mostrado acima e efetue da direita para esquerda.
      • $\color{Brown}{78 + 63 = ?}$
      • $\color{Brown}{93 + 142 = ?}$
      • $\color{Brown}{87 + 231 + 158 = ?}$
      • $\color{Brown}{527 + 1872 = ?}$
      • $\color{Brown}{2056 + 1932 = ?}$
      • $\color{Brown}{5743 + 3278 + 7094 = ?}$

Curitiba, 10 de julho de 2017 (Post refeito e ampliado nesta data).

Republicado em 25 de outubro de 2017.

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com\decioadams.matfisonline

Celular e WhatsApp: (41) 9805-0732