013.3 – Matemática, aritmética. Simplificação de radicais

Vamos tornar os radicais mais simples

O que vimos no post anterior, permite fazer algumas transformações que nos ajudam em muitas situações a obter um radical mais simples ou escrito de forma mais conveniente à situação com que nos deparamos.

Tomemos como exemplo o radical.

$\root 6 \of {2000} = ?$

Decompondo o radicando $2000$ em seus fatores primos, teremos:

$\root 6 \of {{2^4}\cdot {5^3}}=?$

Transformando em potências com expoentes fracionários fica:

${2^ \frac{4}{6}}\cdot{5^ \frac{3}{6}} = ?$

Simplificando os expoentes ficamos com:

${2^ \frac{2}{3}}\cdot {5^\frac{1}{2}} =?$

Reescrevendo na forma de radical, fica:

$\root 3\of {2^2}\cdot \sqrt {5} $

Resultou um produto de dois radicais de índices diferentes e expoentes menores.

Vejamos um exemplo diferente:

$\root 3 \of {1728} =?$

Em fatores primos, temos:           

$\root 3 \of{{2^6}\cdot{3^3}} = ?$

Em forma de expoentes fracionários:

${2^\frac{6}{3}}\cdot {3^\frac{3}{3}} =?$

${{2^2}\cdot {3^1} = 4\cdot 3 = 12}$

Neste caso temos um radicando com raiz exata e não há mais necessidade do uso de radical.

Vamos ver outro exemplo:

$\root 5 \of {256} = ?$

Começamos novamente decompondo em fatores primos.

$\root 5 \of {2^6} = \root 5 \of {{2^5}\cdot {2}} $

Obs.: a potência $2^6$ foi desdobrada em multiplicação de potências de mesma base $ {2^5}\cdot {2}$.

${2^\frac{5}{5}}\cdot {2^\frac{1}{5}} = 2\cdot {\root 5 \of2}$

Veja que ficou bem simplificado o radical.

Mais um exemplo:

$\sqrt {216} = ?$

Da decomposição em fatores primos resulta:

$\sqrt {{2^3}\cdot {3^3}}= ?$

Escrevendo as potências como produtos de potências de mesma base, fica:

$\sqrt{{2^2}\cdot{2}\cdot{3^2}\cdot{3}} =?$

${2\cdot 3}\cdot \sqrt{2\cdot3} = 6\cdot\sqrt{6}$

Novo exemplo: $\root 3\of {10125} =?$ 

$\root 3\of {{3^4}\cdot{5^3}} =?$

$\root 3\of {{3^3}\cdot{3}\cdot{5^3}} = ?$

$ 3\cdot \root 3\of {3}\cdot {5} = 15\cdot\root 3\of{3}$

Último exemplo.

$\root 5\of {23328} = ?$

Decompondo em fatores primos.

$\root 5\of {{2^5}\cdot{3^6}} =?$

$\root 5\of{{2^5}\cdot{3^5}\cdot{3}} = 2\cdot {3}\cdot\root 5\of {3} = 6\cdot\root 5\of {3}$

Aproveite para treinar esse assunto. Simplifique os radicais da listagem abaixo.

I) $\root 3\of {243} =?$

II) $\root 5\of {9216} =?$

III)$\sqrt {6912} =?$

IV)$\root 7\of {1024} =?$

V) $\root 4\of {50000} =?$

VI) $\sqrt {24696} =?$

VII)$\sqrt {18000} =?$

VIII)$\root 3\of {10000} =?$

IX) $\root 5\of {18225} =?$

X) $\sqrt {10648} =?$

Havendo dúvidas, entre em contato para esclarecer e resolver suas dificuldades.

Curitiba, 10 de novembro de 2018

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732

Deixe um comentário