067.11 – Matemática, álgebra. Cologaritmo e antilogaritmo.

Logaritmos

Cologaritmo

Vimos que se ${0 < a ≠ 1}$ e ${b > 0}$, denominamos logaritmo de ${b}$ na base ${a}$ ao expoente de ${a}$ que resulta na potência igual a ${b}$.

Já o cologaritmo é o oposto ou simétrico do logaritmo. Assim: ${colog_a{b} = – log_a{b}}$

${colog_a{b} = (-1)\cdot{log_a{b}}} ⇔ {colog_a{b} = log_a{b}^{-1}}$

${colog_a{b} = log_a{1\over b}}$

Fica demonstrado que o cologaritmo de um número em determinada base é igual ao logaritmo de seu inverso na mesma base.

Continue lendo “067.11 – Matemática, álgebra. Cologaritmo e antilogaritmo.”

067.10 – Matemática, álgebra. Equações logarítmicas

Equações logarítmicas

Há várias formas de equações envolvendo logaritmos. Vamos ver o primeiro deles.

I) Igualdade entre logaritmos de mesma base, como

${log_a{x} = log_a{y}}  ⇔ { x = y}$

Exemplo.

${log_5\underbrace{{(2x + 4)}} =  log_5\underbrace{{(3x + 1)}}}$

${2x + 4 = 3x + 1} ⇔ {2x – 3x = 1 – 4}$

${-x = -3} ⇔ {-x\cdot{(-1)} = -3\cdot{(-1)}}$

${x = 3} ⇔ {S = \{3\}}$

Continue lendo “067.10 – Matemática, álgebra. Equações logarítmicas”

067.9 – Matemática, álgebra. Condições de existência dos logaritmos.

Estudo da existência dos logaritmos.

 

Vimos no início do nosso estudo dos logaritmos que

${log_a{b} = x}$, tem como condição de existência que tenhamos:

${a > 0,  a ≠ 1}$ ⇔ ${0 < a ≠ 1}$

${b > 0}$

Se estas condições não forem satisfeitas o logaritmo não existe. Isso nos leva a um tipo de expressão em que precisamos analisar uma ou mais situações e estabelecer a condição de existência daquele(s) logaritmo(s) especificamente.

Continue lendo “067.9 – Matemática, álgebra. Condições de existência dos logaritmos.”

067.8 – Matemática, álgebra. Expressões logarítmicas.

Expressões logarítmicas.

Vamos exercitar.

 Desenvolver as expressões logarítmicas.

a) ${log_a{({m\cdot n})^v}}$

O expoente do logaritmando, irá multiplicar o logaritmo

${log_a{({m\cdot n})^v}} = {v\cdot{log_a{({m\cdot n})}}}$

Aplicando a propriedade da multiplicação, transformamos o logaritmo da multiplicação e adição dos logarítmos.

${v\cdot({log_a{m} + log_a{n}})} = v\cdot{log_a{m}} + v\cdot {log_a{n}}$

b)${log_x{({{p}\cdot {q}\over {r}})^u}}$

O expoente do logaritmando colocamos novamente multiplicando o logaritmo.

${ u\cdot{log_x{({{p}\cdot{q}\over{r}})}}} = {u\cdot{[log_x{({p}\cdot{q}) – log_x{r}]}}} = {u\cdot{[log_x{p} + log_x{q} – log_x{r}]}}$

Continue lendo “067.8 – Matemática, álgebra. Expressões logarítmicas.”

067.6 – Matemática, álgebra. Logaritmos. Mudança de base um logaritmo.

Logaritmos com mudança de base

 

Ao longo dos estudos empregando logaritmos, nos deparamos com situações em que é necessário mudar a base. Como faremos isso?

Tomemos como exemplo o seguinte:

$ {log_8{1024}} $

Decompondo o logaritmando em fatores primos, encontraremos: $ {1024 = 2^{10}}$

Também sabemos que ${ 2^{3} = 8} $.

Assim podemos escrever: $ {log_8{(8^{3}\cdot 2)}} $

Daí podemos tirar que: ${log_8{8^3} + log_8{2}}$

Continuamos: $ {3\cdot {log_8{8}} + log_8{2}}$

$ {3\cdot {1} } + log_8{2} = 3 + log_8{2}$

Sabemos que: $ {2 = \sqrt[3]{8}}$

Logo: ${ 2 = 8^{{1}\over{3}}} $

Então podemos dizer: $ 3 + log_8{2} = 3 + log_8{8^{{1}\over{3}}} = {3 + {{1\over3}}\cdot {log_8{8}}}$

$ {3 + {{1}\over {3}}\cdot{1}} =  {{{3\cdot 3} + 1}\over{3}}$

$ {{9 + 1} \over{3}} = {{10}\over{3}} $

Continue lendo “067.6 – Matemática, álgebra. Logaritmos. Mudança de base um logaritmo.”

01.062 – Matemática, Álgebra. Inequações do 1º grau – Exercícios resolvidos.

Vamos “malhar”?

  • Determine o conjunto verdade das inequações a seguir.
  • $\bbox[5px,border:2px solid brown]{\color{blue}{ 4x – 7 \lt 2x + 1}} $

Observamos que há termos com a variável $x$ tanto no primeiro como no segundo membro da inequação. Igualmente termos independentes da variável. Para obtermos a solução precisamos deixar a variável no primeiro membro e os termos independentes no segundo. Isso fazemos adicionando os simétricos em ambos os lados. Assim:

\[{4x – 7} \lt {2x + 1} \]

\[ \underbrace{\color{blue}{( 4x – 2x)}} +\underbrace{\color{maroon}{ (- 7 + 7) }} \lt  \underbrace{\color{blue}{ (2x – 2x)}} + \underbrace{\color{maroon}{( + 1 + 7) }} \]

\[2x + 0 \lt 0 + 8 \]  \[{ 2x } \lt { + 8} \]

Para concluir, vamos dividir ambos os membros pelo fator $2$, o que nos deixará a variável $x$ isolada no primeiro membro da inequação. Não há necessidade de mudança de sentido, pois ambos os termos são positivos.

\[ \frac{2x}{2} \lt \frac{+8}{2} \]

\[ x \lt 4 \]

Portanto

\[\bbox[5px,border:2px solid brown]{\color{navy} {V} = \color{navy}{\{ x\in R | x \lt +4 \}}}\]

Rendered by QuickLaTeX.com

  • $\bbox[5px,border:2px solid brown]{\color{blue}{ 11 + 3x \gt – 8}} $

Vamos isolar $x$ no primeiro membro, adicionando $ – 11$ aos dois membros da inequação.

\[\overbrace{\color{maroon}{ (11 – 11)}} + 3x  \gt \overbrace{\color{maroon}{ (-8 -11)}} \] \[ 0 + 3x \gt – 19 \] \[ {3x} \gt {- 19} \]

Dividindo ambos os membros por $3$, iremos isolar $x$ no primeiro membro.

\[ \frac{ (3x) }{ 3 } \gt \frac { (-19) }{ 3 } \] \[x \gt {(-19/3)} \]

\[\bbox[4px,border:2px solid brown]{\color{navy} { V = \left\{ x \in R | x \gt \left(-\frac {19}{3}\right)\right \}}} \]

Rendered by QuickLaTeX.com

  • $ \bbox[4px,border:2px solid brown]{\color{navy}{- 6 + 2x \ge 3x + 1}}$

Temos que adicionar $\color{brown}{+6}$ e $\color{brown}{-3x}$ a ambos os membros da inequação, para isolar a variável $\color{brown}{x}$ no primeiro membro.

\[ \underbrace{\color{maroon}{ (- 6 + 6)}} +\underbrace{\color{blue}{(2x – 3x)}} \ge \underbrace{\color{blue}{(3x – 3x)}} + \underbrace{\color{maroon}{(1 +6)}}\]

\[ 0 – x \ge 0 + 7 \] \[ {-x} \ge  7 \]

Multiplicamos por $\color{brown}{ -1}$ para deixar $\color{brown}{x}$ com sinal positivo, invertendo dessa maneira a desigualdade.

\[{-x}\cdot {(-1)} \ge {+7}\cdot {(-1)}\] \[ x \le (-7) \]

\[\bbox[4px,border:2px solid brown]{\color{navy}{V = \{ x \in R | x \le (-7) \}}}\]

Rendered by QuickLaTeX.com

  • $\bbox[5px,border:2px solid brown]{\color{navy}{ 6 \le 5 – 3x}} $

Para trazermos a variável para o primeiro membro, adicionamos seu simétrico $\color{brown}{3x}$, bem como o simétrico $\color{brown}{-6}$ do termo independente. Obtemos assim:

\[ \underbrace{\color{maroon}{(6 – 6)}} + 3x \le \underbrace{\color{maroon}{ (5 – 6)}} + \underbrace{\color{blue}{(-3x + 3x)}} \]

\[ 0 + 3x \le -1 + 0 \] \[ 3x \le -1 \]

Dividindo por $\color{brown}{3}$ ambos os membros, temos:

\[ \frac{3x}{3} \le \frac{(-1)}{3} \]

\[ x \le \left(-{\frac{1}{3}}\right) \]

\[\bbox[5px,border:2px solid brown]{\color{navy}{ V = \left\{ x \in R | x \le \left({-\frac{1}{3}}\right) \right\}}} \]

Rendered by QuickLaTeX.com

  • $\bbox[5px,border:2px solid brown]{\color{navy}{ 3y + 4 \le 7 – y}} $

Adicionando a ambos os membros da inequação os simétricos $\color{brown}{ -4}$ e $\color{brown}{+y}$, teremos:

\[ \underbrace{\color{blue}{(3y + y) }} + \underbrace{\color{maroon}{(4 – 4)}} \le \underbrace{\color{maroon}{(7 – 4)}} + \underbrace{\color{blue}{(-y + y)}} \]

\[ 4y + 0 \le 3 + 0 \]

\[ 4y \le 3 \]

Dividindo ambos os membros por $\color{brown}{4}$, teremos:

\[ \frac{4y}{4} \le \frac{3}{4} \]

\[ y \le \left(\frac{3}{4}\right) \]

\[\bbox[4px,border:2px solid brown]{\color{navy}{ V = \left\{ x \in R | x \le \left({\frac{3}{4}}\right)\right\}}}\]

Rendered by QuickLaTeX.com

  • $\bbox[5px,border:2px solid brown]{\color{blue}{ 15 – 4x \lt 11 + x}}$

Começamos por adicionar aos dois membros os simétricos $\color{brown}{-x}$ e $\color{brown}{-15}$.

\[\underbrace{\color{maroon}{(15 – 15)}} + \underbrace{\color{blue}{(-4x – x)}} \lt \underbrace{\color{maroon}{(11 – 15)}} + \underbrace{\color{blue}{(x – x)}} \]

\[ 0 – 5x \lt -4 + 0 \] \[ -5x \lt -4 \]

Dividindo ambos os membros por $\color{brown}{-5}$, isolamos $\color{brown}{x}$ e invertemos a desigualdade de $\color{brown}{\lt}$ para $\color{brown}{\gt}$.

\[\frac{-5x}{-5} \lt \frac{-4}{-5} \] \[ x \gt \left(\frac{4}{5}\right) \]

\[\bbox[5px,border:2px solid brown]{\color{navy}{ V = \left\{ x \in R | x \gt \left(\frac{4}{5}\right) \right\}}}\]

Rendered by QuickLaTeX.com

  • $\bbox[5px,border:2px solid brown]{\color{blue}{ 6x + 5\gt 4x – 7}}$

Para isolarmos $\color{brown}{x}$ no primeiro membro, temos que adicionar aos dois os simétricos de $\color{brown}{4x}$ e $\color{brown}{5}$, ficando assim:

\[\underbrace{\color{blue}{6x -4x}} + \underbrace{\color{maron}{ 5 – 5}} \gt \underbrace{\color{blue}{4x – 4x}} + \underbrace{\color{maroon}{(-7 – 5)}} \]

\[ 2x + 0 \gt 0 – 12 \] \[ 2x \gt -12 \]

Dividimos por $\color{brown}{2}$ ambos os membros e teremos:

\[ \frac{2x}{2} \gt \frac{-12}{2} \] \[ x \gt -6 \]

\[\bbox[5px,border:2px solid brown]{\color{navy}{ V = \{ x \in R | x \gt – 6 \}}} \]

Rendered by QuickLaTeX.com

  • $\bbox[5px,border:2px solid brown]{\color{blue}{ 2 + 7x \gt 6x + 4}} $

Adicionando $\color{brown}{-2}$ e $\color{brown}{-6x}$ aos dois membros isolamos $\color{brown}{x}$ no primeiro membro.

\[ \underbrace{\color{maroon}{ 2 – 2}} + \underbrace{\color{blue}{7x – 6x}} \gt \underbrace{\color{blue}{6x – 6x}} + \underbrace{\color{maroon}{4 – 2}} \]

\[ 0 + x \gt 0  + 2 \]

\[ x \gt 2 \]

\[\bbox[5px,border:2px solid brown]{\color{navy}{ V = \{ x \in R| x \gt 2\}}} \]

Rendered by QuickLaTeX.com

Curitiba, 02 de junho de 2016

Curitiba, 07 de janeiro de 2018 (Republicação)

Décio Adams

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celulares: (41) 99805-0732

01.061 – Matemática, Álgebra. Inequação do primeiro grau.

Inequação! Que é isso?

Lembremos que uma equação é uma igualdadeentre duas quantidades, representadas por números, letras e expressões de letras com números. O prefixo in é uma negação. Assim a palavra inequação, poderíamos dizer, que é a negação de uma equação. Em outras palavras é uma desigualdade. Existem alguns símbolos que usamos para indicar essas desigualdades como:

  • “Menor do que”                                               $\Rightarrow\color{maroon}{ \mathbf{\lt}} $
  • “maior do que”                                                $\Rightarrow \color{maroon}{\mathbf{\gt}} $
  • “menor ou igual a”                                          $\Rightarrow \color{maroon}{\mathbf{\le}} $
  • “maior ou igual a”                                            $\Rightarrow\color{maroon}{\mathbf{ \ge}} $
  • “Diferente”                                                        $\Rightarrow\color{maroon}{\mathbf{\neq}} $
  • “Não menor do que”                                       $\Rightarrow\color{maroon}{\mathbf{\not\lt}} $
  • “Não maior do que”                                         $\Rightarrow\color{maroon}{\mathbf{\not\gt}} $
  • “Não menor ou igual a”                                    $\Rightarrow\color{maroon}{\mathbf{\not\le}}$
  • “Não maior ou igual a”                                    $\Rightarrow\color{maroon}{ \mathbf{\not\ge}}$

Em determinados momentos, todos esses símbolos podem aparecer em uma expressão matemática. No caso presente, estudo das inequações, iremos usar principalmente os quatro primeiros. Vejamos alguns exemplos:

  • $\bbox[5px,border:2px solid brown]{\color{navy}{2x -3 \lt 0}} $
  • $\bbox[5px,border:2px solid brown]{\color{navy}{ x + 7 \gt 2}} $
  • $\bbox[5px,border:2px solid brown]{\color{navy}{ 8 -x \ge 5}}$
  • $\bbox[5px,border:2px solid brown]{\color{navy}{ 4 + x \le 2x}} $
  • A determinação do conjunto verdade de uma inequação, é feita de modo semelhante ao procedimento adotado nas equações, com algumas peculiaridades próprias.
  • Vamos pegar como exemplo a primeira das quatro citadas acima:
  •  $\bbox[5px,border:2px solid brown]{\color{navy}{2x – 3\lt 0}}$.
  • O objetivo é obter uma desigualdade que indique onde estão localizados os valores que servem para substituir  nessa inequação. Temos então que deixar o isolado no primeiro membro.
  • \[ 2x – 3 + 3 \lt 0 + 3 \] \[2x \lt 3 \] \[ {{2x}\over 2} \lt {3\over 2} \] \[ x \lt {3\over 2} \]
  • Isso nos mostra que todos os números reais, menores do que o número 3/2 servem para x, isto é, transformam a expressão em uma sentença verdadeira. Logo: \[\bbox[5px,border:2px solid brown]{\color{navy}{ V =\left\{ x\in R | {x\lt {3\over 2}}\right\}}} \]
  • Representando o conjunto dos números reais na Reta Real, o conjunto verdade dessa inequação será formado por todos os números associados aos pontos dessa reta, à esquerda do ponto que corresponde ao número 3/2.
*** QuickLaTeX cannot compile formula:


\begin{tikzpicture}
\begin{axis}[
title=Reta num\'{e}rica,
axis x line=center,
axis y line=none,
xmin = -10,
xmax = +10,
ymin = -1,
ymax = 1,
xtick={-10,-9,...,9,10},
height=3cm,
width=\textwidth,
xlabel=$x$,
ylabel=$y$,
axis line style=
]

\addplot[blue,very thick, domain=-10:10] coordinates {
(-10,0) (1.35,0)
};

\draw[orange,thick] (axis cs:1.5,0) circle (0.08cm);

\end{axis}
\end{tikzpicture}
[/latex
<ul>
 	<li>A falta de espaço, impede a visualização de todo conjunto verdade no gráfico, que abrange todos os números até</li>
 	<li>$-\infty$.</li>
</ul>
<ul>
 	<li style="text-align: justify">Vejamos o segundo exemplo.</li>
 	<li style="text-align: justify">$\bbox[5px,border:2px solid brown]{\color{navy}{ x + 7 \gt 2}} $</li>
 	<li>Procedendo da mesma maneira, teremos:</li>
 	<li style="text-align: justify">\[ x + 7 - 7 \gt 2 - 7 \] \[ x \gt -5 \]</li>
 	<li style="text-align: justify">O conjunto verdade será</li>
 	<li style="text-align: justify">\[\bbox[5px,border:2px solid brown]{\color{navy}{ V =\{x\in R|{x \gt -5}\}}} \]</li>
 	<li style="text-align: justify">Igualmente aqui, se representarmos a reta numérica real, o conjunto verdade será formado por todos os números à direita do número (<strong>-5</strong>), que fica excluído, assim como todos os números à sua esquerda.</li>
</ul>
[latex display="true"]

\begin{tikzpicture}
\begin{axis}[
title=Reta num\'{e}rica,
axis x line=center,
axis y line=none,
xmin = -10,
xmax = +10,
ymin = -1,
ymax = 1,
xtick={-10,-9,...,9,10},
height=3cm,
width=\textwidth,
xlabel=$x$,
ylabel=$y$,
axis line style=
]

\addplot[blue,very thick, domain=-10:10] coordinates {
(-4.85,0) (10,0)
};

\draw[orange,thick] (axis cs:-5,0) circle (0.08cm);

\end{axis}
\end{tikzpicture}


*** Error message:
Argument of \pgfmathfloatparse@@ has an extra }.
leading text: \end{axis}
Paragraph ended before \pgfmathfloatparse@@ was complete.
leading text: \end{axis}
Extra }, or forgotten \endgroup.
leading text: \end{axis}
Extra \else.
leading text: \end{axis}
Paragraph ended before \pgfplotsplothandlerdeserializepointfrom@default@ was 
Package PGF Math Error: The function `thisrow' already exists.
leading text: ]
Package PGF Math Error: The function `thisrowno' already exists.
leading text: ]
Package pgfplots Error: Sorry, nested axis environments are not supported. Please move the inner axis environment below \end{axis} and use alignment options (for example named nodes, see manual) to place it at the desired position.
leading text: ]
TeX capacity exceeded, sorry [input stack size=5000].

  • A vez da terceira:
  • $\bbox[5px,border:2px solid brown]{\color{navy}{ 8 -x \ge 5}} $
  • Aplicando o mesmo procedimento, ficamos com:
  • \[ 8 – 8 – x \ge 5 – 8 \] \[ -x \ge -3 \]
  • Observe que o os dois membros da inequação são precedidos do sinal $-$, o que nos indica que para melhor interpretação, devemos multiplicar a expressão toda $-1$. Lembrando da reta numérica, vamos observar que a posição dos números negativos, fica invertida em relação ao zero$(0)$, isto é, quanto maior for o módulo, mais à esquerda ele se situa. A consequência disso é que, a multiplicação de uma inequação por $-1$, inverte o sentido da desigualdade, ou seja se era $\le$, passa para $\ge$ e vice-versa. Vamos ver como fica nosso exemplo.
  • \[ {(-x \ge – 3)}\cdot{(-1)} \] \[ x\le 3 \]
  • O conjunto verdade dessa inequação será pois:
  • \[\bbox[5px,border:2px solid brown]{\color{navy}{ V = \{x\in R|{x\le 3}\}}} \]
  • Neste caso o número $3$, faz parte do conjunto verdade. Ficam excluídos apenas os números à direita do $3$. Na Reta Real fica:

Rendered by QuickLaTeX.com

  • O último exemplo:
  • $\bbox[5px,border:2px solid brown]{\color{navy}{ 4 + x \le 2x}} $
  • Aplicando o raciocínio par isolar a variável, temos:
  • \[ 4 – 4 + x \le 2x – 4 \] \[ x – 2x \le 2x – 2x – 4 \] \[ -x \le -4 \]
  • Novamente é preciso multiplicar por $-1$, e inverter o sinal da desigualdade.
  • \[{(-x \le -4)}\cdot{(-1)} \] \[ x \ge 4 \]
  • O conjunto verdade será composto por todos os números reais, desde o $4$ inclusive, até infinito$\infty$.
  • \[\bbox[5px,border:2px solid brown]{\color{navy}{V = \{x\in R|{x\ge 4}\}}} \]
  • Na Reta Real,  teremos:

Rendered by QuickLaTeX.com

  • O final da resolução de qualquer inequação de primeiro grau será sempre a variável, seguida de um sinal de desigualdade e depois um número. Se a variável tiver sinal negativo, devemos multiplicar por $\color{Brown}{-1}$ e inverter o sinal da desigualdade. Isso não pode ser esquecido. 

Vamos “malhar”?

  • Determine o conjunto verdade das inequações a seguir.
  • $\color{navy}{ 4x – 7 \lt 2x + 1}$
  • $\color{navy}{ 11 + 3x \gt – 8} $
  • $\color{navy}{ – 6 + 2x \ge 3x + 1}$
  • $\color{navy}{ 6 \le 5 – 3x} $
  • $\color{navy}{ 3y + 4 \le 7 – y} $
  • $\color{navy}{15 – 4x \lt 11 +x}$
  • $\color{navy}{ 6x + 5\gt 4x – 7}$
  • $\color{navy}{ 2 + 7x \ge 6x + 4} $

 Curitiba, 21 de maio de 2016.

Curitiba, 07 de janeiro de 2018 (Revisto e republicado)

Décio Adams

[email protected]

[email protected]

www.facebook.com/decio.adams

www.facebook.com/livros.decioadams

www.facebook.com/decioadams.matfisonline

@adamsDcio

Fone: (41) 3019-4760

Celular: (41) 99805-0732

01.059 – Matemática, Álgebra. Sistemas de equações com duas incógnitas.

Sistemas com duas incógnitas

Até o último post falando de equações, vimos somente situações em que aparece apenas uma incógnita. E se nos depararmos com um problema em que haja duas incógnitas, como iremos proceder?

Com as ferramentas, ou seja, métodos de resolução vistos até agora, fica complicado. No entanto existem modos de chegarmos a uma resposta satisfatória. Depende das informações que tivermos a respeito dessas incógnitas. Geralmente é necessário saber de duas relações entre essas elas. Isso nos permitirá escrever duas equações envolvendo essas incógnitas e assim formaremos um sistema de duas equações. De posse dessas duas equações, aplicando o raciocínio adequado, poderemos determinar o valor das incógnitas. Nesse raciocínio iremos utilizar as propriedades que estudamos anteriormente para as operações, as expressões algébricas, enfim tudo que vimos até o momento.

Continue lendo “01.059 – Matemática, Álgebra. Sistemas de equações com duas incógnitas.”

01.034 – Matemática, Exercícios resolvidos

Lista de exercícios

Resolvidos e comentados.

Uma pessoa, encontrou meus artigos sobre matemática (quatro operações, propriedades, potenciação e radiciação), que publiquei há um ano passado aproximadamente. Ali encontrou meus contatos e telefonou, para pedir ajuda. Trata-se de uma lista de exercícios sobre o assunto. Tentou me explicar por telefone e eu tentei lhe resolver, pela forma como entendi. Graças a Deus, eu tive a ideia de pedir que ele fizesse uma cópia (scanner) e me mandasse por e-mail, pois eu havia entendido erradamente e a resposta estaria errada. São ao todo 13 exercícios, alguns bastante simples de solucionar, outros exigem mais raciocínio, com aplicação de recursos aritméticos e algébricos.

Continue lendo “01.034 – Matemática, Exercícios resolvidos”

01.033 – Matemática – Aritimética, razão, proporção. Regra de três simples

Aplicação das proporções – Regra de três simples.

  • Uma das principais aplicações das proporções é a conhecida Regra de Três. Cabe talvez a pergunta, por que o nome Regra de Três? 

Na verdade, o nome se deve ao fato de serem fornecidos três valores e existir um quarto valor desconhecido. São valores de duas grandezas que se correspondem. A existência de proporção entre esses valores, permite que seja determinado o quarto valor, através do conhecimento dos outros três.

Vamos ver um exemplo.

Continue lendo “01.033 – Matemática – Aritimética, razão, proporção. Regra de três simples”