01.020 – Matemática, aritmética. Números inteiros relativos.

Números relativos.

Nos primórdios da matemática, surgiram primeiramente os números, hoje denominados Números Naturais, associados a quantidades de objetos. A necessidade de exprimir quantidades que não representam um número inteiro de objetos, fez surgir as divisões decimais. Os algarismos após a vírgula, mas exatos, ou as dízimas periódicas. Isso ampliou grandemente as opções de resolução de problemas. Persistia no entanto um problema. A subtração só era possível se o minuendo tivesse valor maior que o subtraendo. Isso deixava a operação de subtração impossível em muitas situações. Como a necessidade costuma resultar no surgimento de inovações, foi também aqui que surgiu o que hoje conhecemos como Conjunto de Números Inteiros Relativos e posteriormente, os Racionais Relativos. 

Continue lendo “01.020 – Matemática, aritmética. Números inteiros relativos.”

01.019 – Matemática – Aritmética, Teoria dos conjuntos. Diferença entre conjuntos

Diferença entre conjuntos.

Em artigos anteriores falamos de intersecção, reunião ou união, conjuntos disjuntos. Faltou apenas uma coisa. Diferença entre dois conjuntos A e B.

  • Denominamos diferença entre os conjuntos$\color{Navy}{A}$ e $\color{NavyBlue}{B}$, ao conjunto dos elementos pertencentes ao conjunto $\color{NavyBlue}{A}$ , que não pertencem ao conjunto $\color{NavyBlue}{B}$ . Um Diagrama de Venn pode nos mostrar graficamente como é.
  • $\color{Brown}{A = \{m, n, o, p, q\}}$
  • $\color{Brown}{B =\{p, q, r, s, t\}}$
  • $\color{OliveGreen}{A – B = \{m, n, o\}}$ ou $\color{OliveGreen}{A/B = \{m, n, o\}}$
  • $\color{OliveGreen}{B – A = \{r, s, t\}}$ ou  $\color{OliveGreen}{B/A = \{r, s, t\}}$

Continue lendo “01.019 – Matemática – Aritmética, Teoria dos conjuntos. Diferença entre conjuntos”

01.018 – Matemática, Teoria dos conjuntos. Intersecção e união de conjuntos.

Operações com conjuntos.

  • União ou reunião de conjuntos.

Sejam:

  • $\color{Navy}{A = \{a,e,i,o,u\}}$ $\rightarrow$ conjunto das vogais.
  • $\color{Navy}{B = \{a,b,c,d,e,…,x,y,z\}}$$\rightarrow$ alfabeto latino.

união ou reunião desses dois conjuntos, formará o conjunto das letras do alfabeto. Simbolicamente representamos isso da seguinte maneira:

  • $\color{Navy}{A \cup B = U =\{a,b,c,d,e,f,g,…,x,y,z\}}$
  • Vemos que ao unir um conjunto a um de seus sub-conjuntos, o resultado é o próprio conjunto.

Num Diagrama de Venn:

Rendered by QuickLaTeX.com

Continue lendo “01.018 – Matemática, Teoria dos conjuntos. Intersecção e união de conjuntos.”

01.015 – Matemática, aritmética, operações com naturais, radiciação – Propriedades

Potenciação de radicais.

  • Radicais com radicandos de mesma base.

Exemplo: $\bbox[4px,border:2px solid Olive]{\color{Blue}{\sqrt[3]{({3^2})^2} = {(\sqrt[3]{3^2}})^2} = {\sqrt[3]{3^2}}^2}$

Vamos transformar em multiplicação de radicais:

  • $\color{Blue}{\sqrt[3]{3^2}\times\sqrt[3]{3^2} = \sqrt[3]{3^{2+2}} = \sqrt[3]{3^{2\times 2}} = \sqrt[3]{3^4}}$

Note que o radicando agora tem como expoente o número 4, produto dos expoentes interno e externo. Como o expoente é maior que o índice, podemos decompor o radicando em uma multiplicação de potências de modo que uma tenha expoente múltiplo do índice. Assim:

  • $\color{Blue}{\sqrt[3]{3^4} = \sqrt[3]{3^{3 + 1}} = \sqrt[3]{3^3}\times\sqrt[3]{3^1} = 3\times \sqrt [3]{3}}$
  • Temos ao final uma forma simplificada da expressão inicial. O valor permanece exatamente o mesmo do inicial.

Vejamos outro exemplo: $\color{Blue}{\sqrt[4]{({5^3})^4} = {(\sqrt[4]{5^3})^4} = {\sqrt[4]{5^3}}^4}$

Na forma de multiplicação:

  • $\color{Blue}{\sqrt[4]{5^3}\times\sqrt[4]{5^3}\times\sqrt[4]{5^3}\times\sqrt[4]{5^3} = \sqrt[4]{5^{(3 + 3 + 3 + 3)}} = \sqrt[4]{5^{(4\times 3)}} = \sqrt[4]{5^{12}}}$

O expoente do radicando é múltiplo do índice. Portanto podemos simplificar, ou dividir o expoente pelo índice.

  • $\color{Brown}{\sqrt[4]{5^{12}} = 5^ \frac {12}{4} = 5^3}$
  • Portanto podemos fazer sempre a multiplicação entre os expoentes interno e externo. 
  • Façamos alguns exercícios aplicando o que foi visto acima. Simplifique os radicais.
  • $\color{Brown}{(\root 2\of {3^3})^4 = ?}$
  • $\color{Brown}{(\root 5\of {7^4})^3 = ?}$
  • $\color{Brown}{(\root 6\of {4^3})^4 = ?}$
  • $\color{Brown}{(\root 3\of {5^4})^3 = ?}$
  • $\color{Brown}{(\root 9\of {7^3})^5 = ?}$
    • O mesmo raciocínio se aplica a um produto de radicais, elevado a uma potência. Bastará multiplicar cada um dos expoentes internos pelo externo, como no exemplo abaixo.
    • $\color{Blue}{\left(\sqrt[3]{2^2}\times\sqrt[3]{3^3}\times\sqrt[3]{2^3}\times\sqrt[3]{2}\times\sqrt[3]{3^2}\right)^2 =\\ {\sqrt [3]{2^2}}^2\times{\sqrt[3]{3^3}}^2\times{\sqrt [3]{2^3}}^2\times{\sqrt[3]{2}}^2\times{\sqrt [3]{3^2}}^2 }$
    • $\color{Blue}{\sqrt[3]{2^4}\times\sqrt[3]{3^6}\times\sqrt[3]{2^6}\times\sqrt[3]{2^2}\times\sqrt[3]{3^4}}$
  • Agrupando os radicais com potências de mesma base, teremos:
  • $\color{Blue}{\sqrt[3]{2^4}\cdot\sqrt[3]{2^6}\cdot\sqrt[3]{2^2}\cdot\sqrt[3]{3^6}\cdot\sqrt[3]{3^4}\\ =\sqrt [3]{{2^4}\cdot{2^6}\cdot{2^2}}\cdot\sqrt[3]{{3^6}\cdot{3^4}}}$
  •  $\color{Blue}{\sqrt[3]{2^{(4 + 6 + 2)}}\times\sqrt[3]{3^{(6 + 4)}}}$
  • $\color{Blue}{\sqrt[3]{2^{12}}\times\sqrt[3]{3^{10}}=2^{\frac {12}{3}}\times 3^{\frac {10}{3}} = 2^4\times 3^{\frac{9}{3}}\times 3^{\frac {1}{3}}}$ $\color{Blue}{16\times{3^3}\times\sqrt[3]{3} = 16\cdot 27\cdot\sqrt[3]{3}}$
  • $\color{Blue}{432\cdot\sqrt[3]{3} =({\root5\of {3^2}}\times{\root5\of {5^3}}\times{\root5\of {3^4}})^3}$
  •  $\color{Blue}{\root5\of {3^2}^{3}\times\root5\of{5^3}^{3}\times\root5\of{3^4}^{3}=\root 5\of {3}^{6}\times\root5\of {5}^{9}\times\root5\of 3^{12}}$
  • $\color{Blue}{\root5\of 3^{9 + 12}\times\root5\of 5^{5 + 4}}$
  • $\color{Blue}{\root5\of 3^{20}\times\root5\of {3}\times\root 5\of 5^5\cdot \root5\of {5^4} = 3^{4}\times 5\cdot \root 5\of {3\times {5^{4}}}}$
  • $\color{Blue}{405\times \root 5\of {3\times {5^4}} = 405\times\root 5\of {1875}}$
  • Exercitando um pouco.
    • Simplifique as expressões.
      • $\color{Brown}{(\root 3\of {4^2}\times\root 3\of {2^3}\times\root 3\of {5^4})^3 = ?} $
      • $\color{Brown}{(\root 4\of {3^5}\times\root 4\of {6^3}\times\root 4\of {2^4})^5 = ?}$
      • $\color{Brown}{(\root 5\of {7^3}\times\root 5\of {5^4}\times\root 5\of {3^4}\times\root 5\of {15^5})^4 = ?}$
      • $\color{Brown}{(\root 2\of {3^5}\times\root 2\of {9^2}\times\root 2\of {6^3}\times\root 2\of {4^3}\times\root 2\of {6^3})^3 =?}$

Trabalhar com os radicais, usando as propriedades adequadas, permite quase sempre chegar a expressões bem mais simplificadas do que se apresentam inicialmente.

Obs.: Em caso de dúvidas sobre o conteúdo ou exercícios, faça contato por meio de um dos canais abaixo. Estou aberto a quaisquer perguntas sobre o assunto. Disponha. 

Curitiba, 04 de março de 2015 (Reformulado e melhorado em 16 de julho de 2016). Revisto e republicado em 03/11/2017.

Décio Adams

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 9805-0732

01.014 – Matemática, aritmética, radiciação – propriedades.

Mais umas novidades sobre radiciação.

Multiplicação de radicais de mesmo índice.

  • Vamos ver como isso funciona.
    • $\color{Blue}{\sqrt[3]{ 5}\times\sqrt [3]{7}\times\sqrt [3]{2} =\sqrt[3]{5\times7\times2} = \sqrt[3]{70}}$
    • $\color{Blue}{\sqrt [5]{2^3}\times\sqrt[5]{4^2}\times\sqrt[5]{8} = \sqrt[5]{2^3}\times\sqrt[5]{2^2}^2\times\sqrt[5]{2^3}}$
    • $\color{Blue}{ \sqrt[5]{2^3}\times\sqrt[5]{2^4}\times\sqrt[5]{2^3} = \sqrt[5]{2^{3+4+3}}}$
    • $\color{Blue}{\sqrt[5]{2^{10}} = 2^{\frac{10}{5}} = 2^2}$
    • Podemos notar que é possível resolver uma porção de operações com potências e raízes sem recorrer a nenhum cálculo pesado. Basta aplicar as propriedades que permitem fazer uma variedade de transformações. Dos exemplos deduzimos:
  • Uma multiplicação de radicais de mesmo índice é igual a um único radical, com o mesmo índice, cujo radicando é o produto dos radicandos fatores.

Continue lendo “01.014 – Matemática, aritmética, radiciação – propriedades.”

01.013 – Matemática – Aritmética, operações com naturais. Radiciação.

O caminho inverso. – Radiciação.

Assim como em outras situações, estamos vendo que, a cada nova operação matemática que aprendemos, logo depois aparece outra, que faz o caminho contrário. E não seria diferente com a potenciação.

  • Vamos pegar um número, potência de 3. Esse número vai ser 243. Vamos decompor em seus fatores, para sabermos qual é o expoente ao qual foi elevada a base 3, para encontrar 243.
  • Fizemos cinco divisões sucessivas por $3$, até resultar quociente $1$. Dessa forma temos que $\color{Blue}{3^5 = 243}$
  • Então podemos representar:
  • $\color{Blue}{243 = 3^5 = 3\times3\times3\times3\times3} $

A base 3, elevada ao expoente 5 e obtemos a potência 243.

  • Neste caso dizemos que 3 é a raiz quinta de 243.

Essa operação inversa se denomina Radiciação  e se representa na forma de um radical, onde temos:

  • Radicando é número cuja raiz estamos determinando.
  • Índice é o número que indica o expoente ao qual deve ser elevada a raiz para resultar o radicando.
  • Raiz é a base da potenciação que resulta no radicando.

Assim, usando o símbolo:\[\bbox[4px,border:2px solid Olive]{\color{Blue}{ \root 5 \of {243} = 3}}\]

Continue lendo “01.013 – Matemática – Aritmética, operações com naturais. Radiciação.”

01.012 – Matemática – Aritimética, operações com naturais. Potenciação II

Buscas na internet.

Pesquisando na internet, descobri que nos últimos dias a procura pelo assunto potenciação, por parte dos internautas, aumentou quase 100%. Isso significa que estou atacando um dos assuntos procurados. Vamos seguir mais um pouco. Apresentar mais alguns detalhes sobre o assunto.

  • Vamos ver como se faz uma multiplicação de potências iguais.
  • Assim: $\color{Blue}{3^2\times 3^2\times 3^2\times 3^2 = (3^2)^4}$
  • Temos agora uma potência de potência, isto é, três elevado ao quadrado, elevado a quarta potência.
  • Vamos aplicar no começo, a regrinha da multiplicação de potências de mesma base.
  • Teremos:$\bbox[4px,border:2px solid Olive]{\color{Blue}{3^{(2+2+2+2)} = 3^8}}$

Se observarmos bem, os expoentes na expressão $\color{Blue}{{[(3)^2]}^4}$, vemos que, se multiplicarmos os expoentes $\color{Blue}{2\times 4= 8}$ ou seja a soma dos expoentes das potências iguais.

Dessa forma pode-se afirmar que:

  • “Para elevar uma potência a outra potência, basta conservar a base e multiplicar os expoentes”.
  • Vamos exercitar um pouco?
    • $\color{Blue}{[(4)^2]^3 = 4^{(2\times 3)} = 4^6}$
    • $\color{Blue}{[(7)^3]^3 = 7^{(3\times 3)} = 7^9}$
    • $\color{Blue}{[(11)^4]^2 = (11)^(4\times 2) = (11)^8}$
    • $\color{Blue}{{[(5)^4]^5} = 5^{(4\times 5)} = 5^{20}}$

Fica muito simples perceber que a operação potenciação apresenta bem mais possibilidades de aplicações úteis, do que meramente substituir uma multiplicação por uma expressão mais simples, mais curta. Começam a pintar várias novidades. O que vimos até aqui é apenas um pequeno vislumbre do que é possível. Mas vamos devagar. Um degrau de cada vez.

Vamos recordar o que já vimos até aqui?

  • Transformar potências em multiplicações de fatores iguais.
    • $\color{Blue}{7^3 = ?}$
    • $\color{Blue}{5^2 = ?}$
    • $\color{Blue}{8^6 = ?}$
    • $\color{Blue}{3^4 = ?}$
    • $\color{Blue}{2^5 = ?}$
  • Escrever na forma de potências as multiplicações.
    • $\color{Blue}{3\times3\times3\times3\times5\times5\times5 = ?}$
    • $\color{Blue}{5\times5\times5\times5\times5\times5 = ?}$
    • $\color{Blue}{4\times4\times4\times4\times4\times4\times4\times4 = ?}$
    • $\color{Blue}{{11}\times{11}\times{11}\times{11}\times{11} = ?}$
    • $\color{Blue}{7\times7\times7\times7 = ?}$
  • Escrever o resultado das potências.
    • $\color{Blue}{3^3 = ?}$
    • $\color{Blue}{5^3 = ?}$
    • $\color{Blue}{2^5 = ?}$
    • $\color{Blue}{7^1 = ?}$
    • $\color{Blue}{6^0 = ?}$
    • $\color{Blue}{(500)^0 = ?}$
    • $\color{Blue}{(50)^1 = ?}$
  • Efetuar as multiplicações de potências de mesma base.
    • $\color{Blue}{{3^2}\times{3^4}\times{3^2}\times{3^3}\times{3^5} = ?}$
    • $\color{Blue}{{5^4}\times{5^3} = ?}$
    • $\color{Blue}{{4^0}\times{4^3}\times{4^5} = ?}$
    • $\color{Blue}{{6^2}\times{6^3}\times{6^3}\times{6^2} = ?}$
    • $\color{Blue}{{7^5}\times{7^1}\times{7^2} =?}$
  • Efetuar as divisões das potências de mesma base.
    • $\color{Blue}{{(5^8)}\div {(5^3)} = ?}$
    • $\color{Blue}{{(13)^5}\div{(13)^2} = ?}$
    • $\color{Blue}{{(4^7)}\div{(4^7)} = ?}$
    • $\color{Blue}{{(6^3)}\div{(6^1)} = ?}$
    • $\color{Blue}{{(8^6)}\div{(8^5)} = ?}$
  • Vamos dar mais um passinho?
    • E se o expoente for uma potência?
    • $\color{Blue}{5^{3^2} = 5^9}$
  • Trata-se agora de um expoente exponencial. Antes de elevarmos a base ao expoente, precisamos efetuar a potência desse expoente. Ou seja, precisamos efetuar o$\color{Brown}{3^2= 9}$ e depois elevar o 5 à nona potência. Teremos então: $\color{Brown}{5^9}$

Note que se multiplicássemos os expoentes ($\color{Brown}{3\times 2 =6}$, teríamos $\color{maroon}{5^{3\times 2} = 5^6}$, que é totalmente diferente. Notamos que a coisa fica um pouco mais complexa. Portanto cuidado. Potência de potência não é o mesmo que potência com expoente exponencial. Felizmente o uso dessa forma é menos comum, do que a primeira. Um pouco de exercício faz bem, né!

  • Efetue as potências indicadas.
    • $\color{Blue}{7^{5^2} = ?}$
    • $\color{Blue}{5^{3^1} = ?}$
    • $\color{Blue}{6^{4^3} = ?}$
    • $\color{Blue}{8^{3^4} = ?}$
    • $\color{Blue}{9^{2^3} = ?}$
  • Adendo: leitor me enviou a seguinte pergunta, ou melhor questão: Realizar a divisão que ele encontrou num livro ou apostila e não entendeu como resolver.
  • Exercício de divisão
    Exercício de divisão
  • A divisão apresentada é a divisão de duas potências. Seria assim:
  • $\color{Blue}{{{{{{2^3}^2}^1}^8}^7}^6}\div {{{{{{4^2}^2}^8}^0}^9}^6}$
  • Vemos uma sucessão de potências em número de 6 (seis). À primeira vista parece algo difícil de resolver. Se fôssemos desenvolver tudo, iriamos fazer uma montanha de cálculos desnecessários. Não podemos esquecer que a matemática tem alguns atalhos que nos levam à resposta num piscar de olhos. Aquele problema gigante, se resolve num clic.
  • Acompanhem o raciocínio. Na potência dividendo, temos no quarto expoente de cima para baixo o número 1(um). Isto significa que iremos elevar 1(um) ao expoente que existir acima dele e o resultado só pode ser 1(um). Continuando vamos ter:
  • $\color{Blue}{2^1 = 2}$
  • Para terminar temos $\color{Blue}{3^2 = 9}$
  • Reduzimos o dividendo à potência $\color{Blue}{2^9}$
  • No divisor vamos encontrar na terceira posição, do último expoente para baixo. Sabemos que qualquer expoente para 0(zero), resulta igual a 0(zero).
  • O próximo expoente é 8, e vamos ter $\color{Blue}{8^0 = 1}$
  • Na sequência temos o expoente 2 e fica $\color{Blue}{2^1 = 2}$
  • Terminamos com $\color{Blue}{2^2 = 4}$
  • Passamos a ter $\color{Blue}{4^4} = {(2^2)}^4 = {2^{2×4}} =2^8 $
  • Efetuando a divisão $\color{Blue}{{2^9}\div{2^8} = 2^{9-8} = 2^1 = 2}$.
  • Este resultado comprova que a resposta indicada na figura é a correta.
  • Andamos mais um passo. Se você for um dos que procuraram pelo assunto potenciação na internet e tiver interesse em aprofundar o assunto, entre em contato comigo nos endereços que constam abaixo do artigo. Estou a disposição para orientar e tirar suas dúvidas. Legal?

Curitiba, 31 de janeiro de 2015. (Republicação em 02/11/2017).

Décio Adams

[email protected]

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celular e WhatsApp: (41) 99805-0732

01.011 – Matemática- Aritmética, operações com números naturais – Potenciação.

Não é que eu estava esquecendo!

  • Estão lembrados que a multiplicação é uma soma de parcelas iguais?

E se tivermos uma multiplicação de fatores iguais? Será que podemos pensar em uma forma de escrever isso de maneira mais resumida?

  • Por exemplo:   $\bbox[4px,border:2px solid Olive]{\color{Blue}{3\times 3\times 3\times 3\times 3\times 3 = ?}}$
  • Muito simples. Basta irmos multiplicando o três tantas vezes quantas estiver indicado. Mas será que não tem outro jeito? Há muito tempo, pesquisei e não encontrei quando isso aconteceu, alguém olhou para essas expressões e pensou em uma maneira de encurtar a “tripa”. Como?
  • Foi criada a Potenciação, também conhecida como Exponenciação ou forma exponencial. Basta escrever o número de fatores iguais, um pouco acima, do lado direito daquele número que é repetido. Então como fica a expressão aí de cima?

\[\bbox[4px,border:2px solid Olive]{\color{Brown}{3^6}}\]

  • Nessa forma de escrever, temos um número na forma exponencial. Lemos: três elevado a sexta potência, ou três elevado a seis.

Continue lendo “01.011 – Matemática- Aritmética, operações com números naturais – Potenciação.”

Não é que eu estava esquecendo!

  • Estão lembrados que a multiplicação é uma soma de parcelas iguais?

E se tivermos uma multiplicação de fatores iguais? Será que podemos pensar em uma forma de escrever isso de maneira mais resumida?

  • Por exemplo:   $\bbox[4px,border:2px solid Olive]{\color{Blue}{3\times 3\times 3\times 3\times 3\times 3 = ?}}$
  • Muito simples. Basta irmos multiplicando o três tantas vezes quantas estiver indicado. Mas será que não tem outro jeito? Há muito tempo, pesquisei e não encontrei quando isso aconteceu, alguém olhou para essas expressões e pensou em uma maneira de encurtar a “tripa”. Como?
  • Foi criada a Potenciação, também conhecida como Exponenciação ou forma exponencial. Basta escrever o número de fatores iguais, um pouco acima, do lado direito daquele número que é repetido. Então como fica a expressão aí de cima?

\[\bbox[4px,border:2px solid Olive]{\color{Brown}{3^6}}\]

  • Nessa forma de escrever, temos um número na forma exponencial. Lemos: três elevado a sexta potência, ou três elevado a seis.

Continue lendo “01.011 – Matemática- Aritmética, operações com números naturais – Potenciação.”

01.010 – Matemática, aritmética. Propriedades da multiplicação e divisão

 Propriedades da multiplicação.

  • Se para a adição existem propriedades, vamos ver a multiplicação. Afinal, em outro momento vimos que a multiplicação nada mais é do que uma adição de parcelas iguais.

Será que a propriedade comutativa é aplicável à multiplicação? (Lembremos que ela consiste em mudar a ordem das parcelas. Aqui vamos então trocar a ordem dos fatores).

Observem:

  • $\color{Blue}{7 \times 4 = ?}$$\Rightarrow$$\color{Blue}{ (28)}$
  • $\color{Blue}{4 \times 7 = ?}$$\Rightarrow$$\color{Blue}{(28)}$
  • $\color{Blue}{3 \times 6 \times 10 = ?}$$\Rightarrow$$\color{Blue}{(180)}$
  • $\color{Blue}{6\times 3\times 10 = ?} $$\Rightarrow$$\color{Blue}{(180)}$
  • $\color{Navy}{10\times 3\times 6 = ?}$$\Rightarrow$$\color{navy}{(180)}$

Continue lendo “01.010 – Matemática, aritmética. Propriedades da multiplicação e divisão”

01.009 – Matemática, aritmética. Propriedades das operações básicas.

Propriedades das quatro operações básicas.

O termo propriedade aqui não é usado no sentido de posse, como quando adquirimos um bem. Ele passa a ser nossa propriedade. Tem aqui o significado de alguma coisa que lhe é característica, própria. Lembro de ouvir muitas vezes os alunos perguntarem:

  • Para que serve isso, professor?

Nem sempre é fácil explicar, assim na hora, como se diz, “na lata”, para que serve determinado conteúdo. Mas, com certeza, ele será útil em um momento futuro e, quando for hora de usar, pode faltar tempo para voltar atrás e aprender. Por isso, esse assunto, aparentemente um pouco sem “razão de ser”, ou seja, inútil, é muito importante no desenvolvimento de conteúdos posteriores. Apenas para adiantar, é fundamental no aprendizado da álgebra. No momento oportuno vou mostrar como.

Continue lendo “01.009 – Matemática, aritmética. Propriedades das operações básicas.”