01.057 – Matemática, Álgebra. Equações incompletas do 2ºGrau, exercícios resolvidos.

Resolvendo exercícios

Determine o conjunto verdade das equações incompletas do segundo grau que seguem.

a) $ 6x² = 0 $

Um produto é nulo se um dos fatores é nulo. No caso, temos dois fatores onde um é igual a seis (6) e o outro $ x^2$. O único fator que pode ser nulo é o segundo e portanto:

$ x^2 = 0 $

$ x = 0 $

$ V = \{0\} $

b) $ x² – 16 = 0 $

Podemos aplicar o método abreviado ou reduzido na resolução dessa equação. Assim:

$ x^2 – 16 = 0 $

${x^2 – 16 +16 = 0 + 16}$

$ x^2 = 16 $

$\sqrt[2]{x^2} = \sqrt[2]{16} $

$ x = \pm {4 } $

$ V = \{ – 4, + 4\} $

c) $ 5x² – 125 = 0 $

O mesmo caso do exercício anterior.

$ 5x^2 – 125 = 0 $

$ 5x^2 – 125 + 125 = 0 + 125 $

$ 5x^2 = 125 $

$ {{5x^2}\over 5} = {125\over {5}} $

$ x^2 = 25 $

$\sqrt[2]{x^2} = \sqrt[2]{25} $

$x = \pm 5 $

$ V = \{ -5, + 5\} $

d) $ 2x² + 10x = 0$

Esta é uma equação incompleta do tipo em que o termo independente c é nulo. O procedimento agora é diferente, como vimos na parte explicativa.

$ 2x^2 + 10x = 0 $

Entre os dois termos da equação existe um fator comum

$ 2x $

Vamos colocar em evidência esse fator comum, dividindo os dois membros por esse mesmo fator.

$ {2x} [{{2x^2 + 10x)}\over 2x}] = 0 $

$ 2x{(x + 5)} = 0 $

Para concluir, vamos igualar os dois fatores a zero e obter as duas raízes correspondentes.

$ 2x = 0 $

${2x\over 2} = {0\over 2}$

$ x = 0$

$ x + 5 = 0 $

$ x + 5 – 5 = 0 – 5 $

$ x = -5 $

$ V = \{-5, 0\} $

e) $ 7x² – 49x = 0$

O mesmo caso anterior. O fator comum entre os dois termos da equação é

$ 7x $

Colocando em evidência:

${7x}\cdot[{{7x^2 – 49x}\over 7x}] = 0 $

$ 7x[ x – 7] = 0 $

Igualando os dois fatores a zero temos:

$ 7x = 0 $

${7x\over 7} = {0\over 7}$

$ x = 0$

$ x – 7 = 0 $

$ x – 7 + 7 = 0 + 7 $

$ x = 7 $

$ V = \{0, 7\} $

f) $ x² + 4x = 0 $

Fator comum entre os dois termos $ x $. Colocando em evidência:

$ x\cdot[{{x^2 + 4x}\over x}] = 0 $

$ x\cdot [x + 4] = 0 $

Igualando os fatores à zero, teremos:

$ x = 0$

$ x + 4 = 0 $

$ x + 4 – 4 = 0 – 4$

$ x = -4$

$ V = \{-4, 0\} $

g) $ 3x² + 18x = 0$

Mais um do mesmo tipo. Fator comum é $ 3x $ Colocamos em evidência:

${3x}\cdot({{3x^2 + 18x}\over {3x}}) = 0 $

$ 3x\cdot({x + 6}) = 0 $

$ 3x = 0 $

$ x = 0 $

$ x + 6 = 0 $

$ x + 6 – 6 = 0 – 6$

$ x = -6 $

$V = \{-6, 0\} $

h) $ 2x² + 12 = 0$

Voltamos ao exemplo visto primeiro. Vamos resolver.

$2x^2 + 12 – 12 = 0 -12 $

$2x^2 = -12 $

${{2x^2}\over 2} = {-12\over 2} $

$ x^2 = -6 $

${ \sqrt[2]{x^2}} = {\sqrt[2]{-6}} $

$ {V = \emptyset} $

i) $ 10 x² – 90 = 0 $

Vamos resolver.

${ 10 x^2 – 90 + 90 = 0 + 90 }$

$ {10x^2 = 90 }$

$ {{10x^2}\over 10} = {{90}\over 10} $

${ x^2 = 9 }$

${\sqrt[2]{x^2} = \sqrt[2]{9} }$

$ x = \pm 3 $

$ V = \{-3, +3\} $

j) $ {3x^2 = 0 }$

Outro exemplo da equação que só tem o termo em $x^2$. Um produto só pode ser nulo se um dos fatores for nulo. Nesse caso, o fator que pode ser nulo é $x^2$. Portanto:

$ x^2 = 0 $

$\sqrt[2]{x^2} = \sqrt[2]{0}$

$ x = 0 $

$V = \{0\}$

l) ${10x^2 – 15x = 0}$

Estamos novamente com uma equação incompleta, onde falta o termo independente da variável, isto é, onde $x^0$. Temos um fator comum entre os dois termos restantes que é $5x$. Colocamos em evidência o fator comum, ficando:

${5x}\cdot[{{10x^2 – 15x}\over{5x}}] = 0 $

${5x[2x – 3] = 0} $

Igualando os dois fatores a zero, temos:

${5x = 0}$

$ x = 0$

${2x – 3 = 0}$

${2x = 3}$

${{2x}\over{2}} = {{3}\over {2}}$

${ x = 3/2 }$

$ V = \{0, 3/2\}$

m) ${7x^2 – 28 = 0}$

Nesta equação o termo inexistente é o que contem a variável $x^1$. Vamos pelo método abreviado:

${7x^2 – 28 = 0}$

$ {{7x^2 – 28}\over 7} = 0$

$ x^2 – 4 = 0$

${ x^2 =  4}$

${\sqrt[2]{x^2} = \sqrt[2]{4}}$

${ x = \pm{2}}$

$ { V = \{- 2, +2\}}$

n) ${3x^2 – 27 = 0 }$

O mesmo caso do anterior.

${3x^2 – 27} = 0$

${{3x^2 – 27}\over 3} = 0$

${x^2 – 9 = 0}$

${x^2 = 9}$

${\sqrt[2]{x^2} = \sqrt[2]{9}}$

${ x = \pm 3}$

$ V = \{-3, +3\} $

o) $ {5x^2 + 25 = 0}$

Vamos ver como fica esse.

${5x^2  + 25 = 0}$

${{5x^2 + 25}\over 5} = 0$

$ {x^2 + 5 = 0} $

$ x^5 = -5 $

$ \sqrt[2]{x^2} = \sqrt[2]{-5} $

$ \sqrt[2]{-5} ∉ R $

Por isso

${V = \emptyset }$

Curitiba, 13 de maio de 2016.

Republicado em 27 de dezembro de 2017.

Décio Adams

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/decioadams.matfisonline

@AdamsDcio

Telefone: (41) 3019-4760

Celulares: (41) 99805-0732

Deixe um comentário