006.1 – Matemática, aritmética. Multiplicação.

Crescei e multiplicai-vos

É isso que o Criador disse aos primeiros homens a caminhar sobre a Terra. Mas a nossa multiplicação aqui é um pouco diferente. Vamos multiplicar números, começando por entender o que significa essa operação.  Observe o exemplo.

  •  {♦, ♦} + {♦, ♦} + {♦,♦} = {♦,♦,♦,♦,♦,♦} ⇒ ${{ 2 + 2 + 2} = 6}$

Note que o conjunto de dois elementos foi adicionado três vezes, ou seja, temos uma adição de parcelas iguais, onde cada parcela tem dois elementos. Sempre que surge a ocasião de simplificar a forma de escrever ou seja traduzir em palavras ou símbolos uma sentença matemática, nós o fazemos. Nesse caso, podemos fazer a multiplicação e fica assim:

  • ${3\cdot {♦,♦,} = {3\cdot 2} = 6}$

Lemos aqui: “Tres vezes dois é igual a seis”. Os dois números multiplicados recebem o nome de fatores.

A multiplicação na verdade é nada mais nada menos que uma adição de parcelas iguais.  É importante lembrar desse detalhe, pois  será muito útil em situações que virão pela frente.

Continue lendo “006.1 – Matemática, aritmética. Multiplicação.”

005.2 – Matemática, aritmética. Subtração.

Subtração

Observe que nos exemplos e exercícios anteriores, propositalmente eu coloquei números de modo que sempre o algarismo do minuendo é maior que o do subtraendo. O objetivo era mostrar como se procede nesse caso.

Agora, vamos ver o que fazer quando se trata de subtrair um número maior de um menor. Olha só:

  • 46 – 29 =

4 6

– 2 9


Observe que na coluna das dezenas temos (6 – 9 = ?). Com o que aprendemos até aqui, não é possível subtrair 9 unidades de onde há somente 6 delas. O que as pessoas, principalmente nas comunidades menores, onde todos se conhecem, fazem se por acaso faltar açúcar para adoçar o café ou o chá? Alguém corre até a vizinha e pede uma xícara ou copo do produto emprestado. Quando comprar, devolve e pronto. Nós vamos fazer algo parecido. Veja o algarismo das dezenas. Ele tem unidades sobrando em relação ao subtraendo e pode emprestar uma dezena ao 6, formando então 16, o que torna possível a subtração ( 16 – 9 = 7).

Como o 4 emprestou uma dezenas de unidades ao seu “vizinho” 6, ele agora só possui mais 3 dezenas e a operação fica assim (3 – 2 = 1). Colocamos os dois algarismos nas colunas e formamos o número 17, que é a diferença dos números dados.

46

29


 17

subtração em colunas 3
Subtraindo manualmente 3
  • 607 – 259 =

6 0 7

-2 5 9


subtração em colunas 4
Subtraindo manualmente 4

348

Note que nas unidades temos (7 – 9 = ?). Não é possível. Precisamos emprestar do vizinho. Mas a casa vizinha está vazia, não mora ninguém (0). Vamos emprestar uma unidade de centenas do 6, nessa ordem. Uma centena tem dez dezenas e o (0) também vai precisar emprestar para poder subtrair dele o 5. Então pegamos uma das 10 dezenas e juntamos ao 7, formando 17 e as outras 9 dezenas ficam no lugar do (0) e podemos fazer a subtração (17 – 9=8). Depois (9 – 5 = 4) e por último (5 – 2 = 3). Não podemos esquecer que o 6 emprestou uma de suas centenas aos vizinhos “mais pobres” para que eles pudessem pagar a “conta” (kkkkkkk).

Colocamos os resultados nas suas colunas e temos

607 – 259 = 348.

  • 3479 – 1684 =

3 4 7 9

-1 6 8 4

Na coluna das unidades temos (9 – 4 = 5). Na coluna das dezenas (7 – 8=?) o que é impossível. Vamos ver se o vizinho empresta uma centena. O vizinho tem 4 unidades de centena e pode emprestar uma. Fica (17 – 8 = 9). Agora nas centenas ficou (3 – 6 =?) é impossível. Novamente emprestamos do vizinho, mais rico, que tem 3 milhares e pode emprestar um. Ficamos com (13 – 6 = 7) e por último nos milhares ficamos com (2 – 1 = 1). Temos todos os algarismos para formar o número que é a diferença.

3 4 7 9

-1 6 8 4


subtração em colunas 5
Subtraindo manualmente 5

1 7 9 5

Vamos ver se ficou entendido. Se ficar alguma dúvida, pergunte que eu esclareço depois. Chegou a vez de fazer exercícios.

  • Efetue as subtrações.
    • 73 – 32 =
    • 92 – 57 =
    • 167 – 86 =
    • 462 – 349 =
    • 853 – 537 =
    • 651 – 423 =
    • 1567 – 925 =
    • 3749 – 1567 =
    • 20534 – 12528 =
    • 5781 – 4059 =
    • 6724 – 2549 =
    • 17243 – 8934 =
    • 304752 – 95863 =

Prova real

Dissemos no começo do texto que a subtração é a operação inversa da adição. Se isso é verdadeiro, deve ser possível tirar a prova, isto é, verificar se o resultado está correto. Vamos ver como é que se faz isso?

Se: 607 – 259 = 348, então

prova da subtração
Prova real da subtração

348 + 259 = 607

Se fizermos a soma do resto (diferença) com o subtraendo, encontraremos o minuendo. Isso sempre será verdadeiro e vale a mesma coisa, apenas em sentido inverso para tirar a prova da soma.

Faça a prova real dos resultados da lista de exercícios deixada acima. Assim você comprova que fez a subtração da forma correta.

Se houver dúvidas, entre em contato por meio de um dos canais abaixo e peça ajuda. Não fique em dificuldades, peça auxílio para sanar o problema.

Curitiba, 19 de julho de 2018

Decio Adams, IWA

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/adamsdecio

@AdamsDcio

Telefone: (41) 3019-4760

Celulares: (41) 99805-0732

005.1 – Matemática, aritmética. Subtração

Subtração

Começaremos por dizer que a subtração é a operação inversa da adição. Se na adição nós juntamos, reunimos os elementos de mais de um conjunto, na subtração fazemos o contrário. Retiramos, diminuimos os elementos de um conjunto(subtraendo), dos elementos de outro conjunto(minuendo) normalmente maior.  Por exemplo:

  • ${(♠, ♠, ♠, ♠, ♠, ♠, ♠)} – {(♠, ♠, ♠)} $
  • $= {(♠, ♠, ♠, ♠,\underbrace{ ♠, ♠, ♠})} ={(♠, ♠, ♠, ♠)}$
  •              7      –      3     =  4

Na forma de conjuntos, basta contar os elementos a serem subtraidos(subtraendo), retirando-os do conjunto (minuendo) e teremos um conjunto que é igual a diferença entre os dois. No exemplo temos 7 elementos no minuendo e 3 no subtraendo. Restaram 4 elementos no conjunto diferença. Para conferir se está certo, basta contar os elementos do resto, junto com os elementos do subtraendo e deveremos encontrar o minuendo. Você pode usar os dedos das suas mãos, dos pés, outros objetos para formar os conjuntos que ajudarão a efetuar essas operações. Com isso logo, logo, saberá de cor e salteado a diferença entre esses números pequenos, ficando mais fácil obter o resultado.

Continue lendo “005.1 – Matemática, aritmética. Subtração”

004.3 – Matemática, aritmética. Adição de números naturais.

Adição de números naturais. 

Múltiplas parcelas com múltiplos algarismos.

Você deve ter notado que os exemplos e exercícios vistos até aqui nessa etapa, todos foram escolhidos de forma que a soma dos algarismos de cada coluna ficasse menor do que uma dezena. Isso facilitou nossa atividade. Mas na vida prática, isto não acontece dessa forma. Constantemente teremos adições, de vários números e as somas das colunas irão ultrapassar, e muito, a uma dezena. O que faremos neste caso?

Continue lendo “004.3 – Matemática, aritmética. Adição de números naturais.”

004.2 – Matemática, aritmética. Adição de números naturais.

Adição de números naturais

Números com vários algarismos. Mais de dois números.

Vamos ver agora como se procede com mais de dois números. Sejam os números.

  • 35 + 21 + 43 =

3 5

+ 2 1

4 3


Fazendo adição à mão 3

9 9

Temos na coluna das unidades simples (5 + 1 + 3 = 9) e na coluna das dezenas (3 + 2 + 4 = 9). Escrevemos os dois resultados abaixo das colunas correspondentes, sob a reta horizontal e temos o resultado da adição, que dá noventa e nove (99). São nove dezenas e nove unidades simples.

  • 413 + 324 + 252 =

4 1 3

+ 3 2 4

2 5 2


Fazendo adição à mão 4

9 8 9

Na coluna das unidades temos (3 + 4 + 2 = 9), na coluna das dezenas (1 + 2 + 5 =8) e na coluna das cebtebas simples temos ( + 4 + 3 + 2 = 9). Escrevendo os resultados abaixo das colunas correspondentes, teremos o resultado da adição que é 989. Nove centenas, oito dezenas e nove unidades simples. Facilmente entendemos que se houver mais números a serem adicionados, bastará escreve-los todos na forma de colunas e efetuar a adição, começando da direita (unidades) para esquerda. Novamente iremos exercitar o que vimos.

Efetue as adições, escrevendo em colunas os números (parcelas).

  • 17 + 42 + 30 =
  • 43 + 12 + 34 =
  • 132 + 225 + 312 =
  • 315 + 462 + 212 =
  • 3125 + 2423 + 1321 =
  • 1473 + 3012 + 4114 =
  • 132 + 205 + 230 + 322 =
  • 92 + 142 + 231 + 420 + 23 =

Realize as adições e confira, revisando para ter certeza de que o resultado é o que você encontrou. Se tiver dúvidas, entre em contato comigo por um dos canais abaixo listados.

Curitiba, 18 de julho de 2018

Décio Adams

[email protected]

[email protected]

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

www.facebook.com/adamsdecio

@AdamsDcio

Telefone: (41) 3019-4760

Celulares: (41) 99805-0732

004.1 – Matemática, aritmética. Adição de números com vários algarismos (dois números).

Adição de números com vários algarismos. 

Dois números 

  • Como já vimos anteriormente, os algarismos do sistema decimal de numeração, são em número de dez símbolos. Todos os demais números são escritos com estes símbolos, que passam a ter valores diferentes dependendo da ordem e classe em que estão colocados. Para resolver a adição de números com vários algarismos, de forma manual, começamos por escrever seus algarismos, formando colunas de modo que as ordens e classes fiquem na mesma coluna. Assim:
  • 48 + 31 =

4 8

+

3 1


Fazendo adição à mão 1

7 9

Note que o  8 e o 1 estão ambos na coluna das unidades simples. ( 8 + 1 = 9) adicionamos os dois números e colocamos abaixo de uma linha horizontal traçada sob as colunas. O número 4 + 3 = 7 e também colocamos abaixo da coluna das dezenas de unidades. Dessa forma, resultou que a soma de 48 + 31 = 79. São sete dezenas e nove unidades.

Continue lendo “004.1 – Matemática, aritmética. Adição de números com vários algarismos (dois números).”

067.11 – Matemática, álgebra. Cologaritmo e antilogaritmo.

Logaritmos

Cologaritmo

Vimos que se ${0 < a ≠ 1}$ e ${b > 0}$, denominamos logaritmo de ${b}$ na base ${a}$ ao expoente de ${a}$ que resulta na potência igual a ${b}$.

Já o cologaritmo é o oposto ou simétrico do logaritmo. Assim: ${colog_a{b} = – log_a{b}}$

${colog_a{b} = (-1)\cdot{log_a{b}}} ⇔ {colog_a{b} = log_a{b}^{-1}}$

${colog_a{b} = log_a{1\over b}}$

Fica demonstrado que o cologaritmo de um número em determinada base é igual ao logaritmo de seu inverso na mesma base.

Continue lendo “067.11 – Matemática, álgebra. Cologaritmo e antilogaritmo.”

067.10 – Matemática, álgebra. Equações logarítmicas

Equações logarítmicas

Há várias formas de equações envolvendo logaritmos. Vamos ver o primeiro deles.

I) Igualdade entre logaritmos de mesma base, como

${log_a{x} = log_a{y}}  ⇔ { x = y}$

Exemplo.

${log_5\underbrace{{(2x + 4)}} =  log_5\underbrace{{(3x + 1)}}}$

${2x + 4 = 3x + 1} ⇔ {2x – 3x = 1 – 4}$

${-x = -3} ⇔ {-x\cdot{(-1)} = -3\cdot{(-1)}}$

${x = 3} ⇔ {S = \{3\}}$

Continue lendo “067.10 – Matemática, álgebra. Equações logarítmicas”

067.9 – Matemática, álgebra. Condições de existência dos logaritmos.

Estudo da existência dos logaritmos.

 

Vimos no início do nosso estudo dos logaritmos que

${log_a{b} = x}$, tem como condição de existência que tenhamos:

${a > 0,  a ≠ 1}$ ⇔ ${0 < a ≠ 1}$

${b > 0}$

Se estas condições não forem satisfeitas o logaritmo não existe. Isso nos leva a um tipo de expressão em que precisamos analisar uma ou mais situações e estabelecer a condição de existência daquele(s) logaritmo(s) especificamente.

Continue lendo “067.9 – Matemática, álgebra. Condições de existência dos logaritmos.”

067.8 – Matemática, álgebra. Expressões logarítmicas.

Expressões logarítmicas.

Vamos exercitar.

 Desenvolver as expressões logarítmicas.

a) ${log_a{({m\cdot n})^v}}$

O expoente do logaritmando, irá multiplicar o logaritmo

${log_a{({m\cdot n})^v}} = {v\cdot{log_a{({m\cdot n})}}}$

Aplicando a propriedade da multiplicação, transformamos o logaritmo da multiplicação e adição dos logarítmos.

${v\cdot({log_a{m} + log_a{n}})} = v\cdot{log_a{m}} + v\cdot {log_a{n}}$

b)${log_x{({{p}\cdot {q}\over {r}})^u}}$

O expoente do logaritmando colocamos novamente multiplicando o logaritmo.

${ u\cdot{log_x{({{p}\cdot{q}\over{r}})}}} = {u\cdot{[log_x{({p}\cdot{q}) – log_x{r}]}}} = {u\cdot{[log_x{p} + log_x{q} – log_x{r}]}}$

Continue lendo “067.8 – Matemática, álgebra. Expressões logarítmicas.”